Tam giác ABC cân tại A có AB = AC = 26cm, BC = 20cm. Tính độ dài đường trung tuyến AM.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do M là trung điểm của BC nên BM = CM = BC/2 cm
Tam giác AMB có ∠(AMB) = 90o
Áp dụng định lí Pi-ta-go vào tam giác vuông AMB, ta có:
AB2 = AM2 + BM2 ⇒ AM2 = AB2 - BM2 = 342 - 162
= 1156 - 256 = 900
Suy ra: AM = 30 (cm).
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
Áp dụng hệ thức lượng:
\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=12\left(cm\right)\)
Do AM là trung tuyến ứng với cạnh huyền
\(\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{25}{2}=12,5\left(cm\right)\)
Áp dụng định lí Pytago tam giác ABC vuông tại A
\(BC^2=225+400=625\Rightarrow BC=25\)cm
Xét tam giác ABC, đường cao AH
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{300}{25}=12\)cm
Vì AM là đường trung tuyến suy ra : \(AM=\dfrac{BC}{2}=\dfrac{25}{2}\)cm
Tam giác ABC cân tại A, AM là đường trung tuyến đồng thời là đường cao.
Áp dụng định lí Pytago trong tam giác vuông ABM có:
BM^2=AB^2-AM^2=10^2-6^2=64=>AM=8cm. Chọn D
Tam giác ABC cân tại A, AM là đường trung tuyến đồng thời là đường cao.
Áp dụng định lí Pytago trong tam giác vuông ABM có:
BM^2=AB^2-AM^2=10^2-6^2=64=>AM=8cm.
Chọn D
Tam giác ABC cân tại A nên AM đồng thời là đường cao và M là trung điểm của BC
Khi đó ta có BM2 = AB2 - AM2 = 102 - 82 = 36 ⇒ BM = 6cm.
⇒ BC = 6.2 = 12cm. Chọn A
\(BC^2=AB^2+AC^2\left(Pitago\right)\)
\(\Rightarrow AC^2=BC^2-AB^2=625-400=225\)
\(\Rightarrow AC=15\left(cm\right)\)
\(AM^2=\dfrac{2.\left(AB^2+AC^2\right)-BC^2}{4}\) (Độ dài trung tuyến trong tam giác)
\(\Rightarrow AM^2=\dfrac{2.\left(400+225\right)-625}{4}=\dfrac{625}{4}\)
\(\Rightarrow AM=\dfrac{25}{2}\left(cm\right)=12,5\left(cm\right)\)
Tương tự ...
\(BN^2=\dfrac{2.\left(AB^2+BC^2\right)-AC^2}{4}\)
\(\Rightarrow BN^2=\dfrac{2.\left(400+625\right)-225}{4}=\dfrac{1825}{4}\)
\(\Rightarrow BN=\sqrt[]{\dfrac{1825}{4}}=\sqrt[]{\dfrac{73.25}{4}}=\dfrac{5\sqrt[]{73}}{4}\left(cm\right)\)
\(CE^2=\dfrac{2.\left(AC^2+BC^2\right)-AB^2}{4}\)
\(\Rightarrow CE^2=\dfrac{2.\left(225+625\right)-400}{4}=\dfrac{1300}{4}\)
\(\Rightarrow CE=\sqrt[]{\dfrac{1300}{4}}=\sqrt[]{\dfrac{13.100}{4}}=\dfrac{10\sqrt[]{13}}{4}=\dfrac{5\sqrt[]{13}}{2}\left(cm\right)\)
Đính chính
\(BN=\dfrac{5\sqrt[]{73}}{2}\left(cm\right)\)
\(CE=\dfrac{10\sqrt[]{13}}{2}=5\sqrt[]{13}\left(cm\right)\)
ΔABC vuông tại A có AM là trung tuyến
nên AM=BC/2=12,5cm
AC=căn 25^2-20^2=15cm
AN=15/2=7,5cm
BN=căn AN^2+AB^2=5/2*căn 73(cm)
AE=20/2=10cm
CE=căn AC^2+AE^2=căn 15^2+10^2=5*căn 13(cm)
Cho tam giác ABC cân ở A, đường trung tuyến AM.
a) Chứng minh AM BC
b) Tính AM biết rằng AB cm BC cm 10 , 12
vì tam giác ABC cân tại A nên AM là đường cao của tam giác ABC
Độ dài cạnh BM là: BC : 2 = 20 : 2 = 10 (cm)
xét tam giác AMB vuông tại M theo pytago ta có:
AB2 - BM2 = AM2 = 262 - 102 = 576(cm)
AM = \(\sqrt{576}\) = 24 (cm)
Kết luận độ dài đường trung tuyến AM là: 24cm
Vẽ hình
dùng công thức pythagoes
AM2= 26 2 - 10 2
AM = 24 cm