K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2022

 

( 66 + a + b ) x 9 - 17 = 703
( 66 + a + b ) x 9        = 703 + 17
( 66 + a + b ) x 9        =     720
    66 + a + b              = 720 : 9
    66 + a + b              =    80
    a + b                      = 80 - 66
    a + b                      =    14


Khi đó, b + a - 4 có giá trị bằng :
   b + a - 4
= 14 - 4
=    10
 

   
22 tháng 4 2019

26 tháng 7 2018

Đáp án A

15 tháng 8 2017

Đáp án đúng : B

4 tháng 12 2019

Đáp án B                   

Đặt t = 2 − x + 2 + x ⇔ t 2 = 4 + 2 4 − x 2 ⇔ 4 − x 2 = t 2 − 4 2  và x ∈ − 2 ; 2 ⇒ t ∈ 2 ; 2 2  

Khi đó, phương trình đã cho trở thành: t − t 2 − 4 2 = m ⇔ 2 m = − t 2 + 2 t + 4 = f t .  

Xét hàm số f t = − t 2 + 3 t + 4  trên đoạn  2 ; 2 2 ⇒ min 2 ; 2 2 f t = − 4 + 4 2 ; m a x 2 ; 2 2 f t = 4

Do đó, để phương trình f t = 2 m  có nghiệm  ⇔ − 2 + 2 2 ≤ m ≤ 2 ⇒ a = − 2 + 2 2 b = 2

Vậy T = a + 2 2 + b − 2 + 2 2 + 2 2 + 2 = 6  

18 tháng 3 2016

theo bài ra ta có: | a+7 | + | b-3 | = 0

=> a+7=0 và b-3 = 0

với a+7 =0 => a= 0-7 = -7

với b-3 = 0 => b= 3+0 =3

vậy a+b = -7 + 3 = -4

vậy a+b có giá trị bằng -4

23 tháng 2 2017

-4 nha bạn 

10 tháng 12 2017

24 tháng 12 2017

Chọn A.

18 tháng 11 2018

Đáp án D.

3 tháng 6 2021

Áp dụng viet vào pt \(x^2+px+1=0\) ta được:\(\left\{{}\begin{matrix}a+b=-p\\ab=1\end{matrix}\right.\)

Áp dụng viet vào pt \(x^2+qx+2=0\) ta được:\(\left\{{}\begin{matrix}b+c=-q\\bc=2\end{matrix}\right.\)

\(A=pq-\left(b-a\right)\left(b-c\right)=-\left(a+b\right).-\left(b+c\right)-\left(b^2-bc-ab+ac\right)\)

\(=ab+ac+b^2+bc-b^2+bc+ab-ac\)

\(=2ab+2bc=6\)

3 tháng 6 2021

Phương trình: \(x^2+px+1=0\)

Có 2 nghiệm:a,b

\(\Rightarrow\left\{{}\begin{matrix}a+b=-p\\a.b=1\end{matrix}\right.\)                    \(\Leftrightarrow\left\{{}\begin{matrix}p=-\left(a+b\right)\\1=a.b\end{matrix}\right.\)

Phương trình \(x^2+px+2=0\)

Có 2 nghiệm:b,c

\(\Rightarrow\left\{{}\begin{matrix}b+c=-q\\b.c=2\end{matrix}\right.\)                     \(\Leftrightarrow\left\{{}\begin{matrix}q=-\left(b+c\right)\\2=b.c\end{matrix}\right.\)

Ta có: \(p.q-\left(b-a\right)\left(b-c\right)\)

\(=-\left(a+b\right).\left[-\left(b+c\right)\right]-\left(b-a\right)\left(b-c\right)\)

\(=\left(a+b\right)\left(b+c\right)-\left(b-a\right)\left(b-c\right)\)

\(=ab+ac+b^2+bc-b^2+bc+ab-ac\)

=\(\left(ab+ab\right)+\left(ac-ac\right)+\left(b^2-b^2\right)+\left(bc+bc\right)\)

\(=2ab+2bc\)

\(=2.1+2.2\)

=6

-Chúc bạn học tốt-