Cho tam giác MNP vuông tại M, MK là đường cao, biết MP = 4cm, PK = x, NK = 6. Tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Py-ta-go cho tam giác MNP vuông tại M:
\(MN^2+MP^2=NP^2\)
Thay số: \(7^2+MP^2=25^2\)
\(\Rightarrow MP=24\left(cm\right)\)
Áp dụng hệ thức lượng cho tam giác vuông MNP, đường cao MH ta có:
\(MK.NP=MN.MP\)
Thay số: \(MK.25=7.24\Rightarrow MK=6,72\left(cm\right)\)
Áp dụng định lý Py - ta - go cho tam giác MNK vuông tại K ta có:
\(MK^2+NK^2=MN^2\)
Thay số: \(6,72^2+NK^2=7^2\Rightarrow NK=1,96cm\)
Áp dụng định lí Pytago vào ΔMPK vuông tại K, ta được:
\(MP^2=MK^2+KP^2\)
\(\Leftrightarrow MP^2=3^2+\left(2\sqrt{3}\right)^2=21\)
hay \(MP=\sqrt{21}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MK là đường cao ứng với cạnh huyền NP, ta được:
\(MK^2=PK\cdot NK\)
\(\Leftrightarrow NK=\dfrac{12}{3}=4\left(cm\right)\)
Xét ΔMPK vuông tại K có
\(\cos\widehat{MPN}=\dfrac{PK}{MP}=\dfrac{3}{\sqrt{21}}=\dfrac{\sqrt{21}}{7}\)
Xét ΔMKN vuông tại K có
\(\tan\widehat{MNP}=\dfrac{MK}{KN}=\dfrac{2\sqrt{3}}{4}=\dfrac{\sqrt{3}}{2}\)
M N P K E F 1 1 1
mk chỉ nêu hướng giải còn bn tự trình bày nha
a,Ta có MN=3cm ,MP=4cm
=>NP=5cm
Ta có MN2=NK.NP (HỆ THỨC LƯỢNG TRONG TAM GIÁC MNP VUÔNG )
=>NK=32:5=1,8cm
T2 BN TÍNH ĐC KP
Lại có MK2=NK.KP (HỆ THỨC LƯỢNG TRONG TAM GIÁC MNP VUÔNG)
=>MK=2,4cm
Lại có MK2=MF.MP
=>MF=1,44cm
b, bn C/m MEKF là hcn =>\(\widehat{M_1}=\widehat{E_1}\)
Ta có \(\widehat{M_1}+\widehat{N}=90^O,\widehat{M_1}=\widehat{E_1}\)
=> \(\widehat{E_1}+\widehat{N}=90^O\)
Lại có \(\widehat{E_1}+\widehat{F_1}=90^O\)
\(\Rightarrow\widehat{F_1}=\widehat{N}\)=> \(\Delta EFM\)ĐỒNG DẠNG VS\(\Delta PNM\)(dpcm)
tk mk nha
chúc bn học giỏi
a: Xét ΔKNM vuông tại K và ΔMNP vuông tại M có
\(\widehat{N}\) chung
Do đó: ΔKNM~ΔMNP
Xét ΔMNP vuông tại M và ΔKMP vuông tại K có
\(\widehat{P}\) chung
Do đó: ΔMNP~ΔKMP
=>ΔKNM~ΔMNP~ΔKMP
b: Ta có: ΔKNM~ΔKMP
=>\(\dfrac{KN}{KM}=\dfrac{KM}{KP}\)
=>\(KM^2=KN\cdot KP\)
c: ta có: NP=NK+KP
=4+9
=13(cm)
Ta có: \(KM^2=KN\cdot KP\)
=>\(KM^2=4\cdot9=36\)
=>\(KM=\sqrt{36}=6\left(cm\right)\)
Xét ΔMNP vuông tại M có MK là đường cao
nên \(S_{MNP}=\dfrac{1}{2}\cdot MK\cdot PN=\dfrac{1}{2}\cdot6\cdot13=39\left(cm^2\right)\)
a: Xét ΔKNM vuông tại K và ΔMNP vuông tại M có
góc N chung
=>ΔKNM đồng dạng với ΔMNP
Xét ΔKMP vuông tại K và ΔMNP vuông tại M có
góc P chung
=>ΔKMP đồng dạng với ΔMNP
b: ΔKNM đồng dạng với ΔKMP
=>KN/KM=KM/KP
=>KM^2=KN*KP
c: \(MK=\sqrt{4\cdot9}=6\left(cm\right)\)
\(S_{MNP}=\dfrac{1}{2}\cdot6\cdot13=3\cdot13=39\left(cm^2\right)\)
Sửa đề: Đường cao MH
Áp dụng HTL:
\(MH^2=NH.HP\)
\(\Rightarrow MH=\sqrt{NH.HP}=\sqrt{4.12}=4\sqrt{3}\left(cm\right)\)
\(\left\{{}\begin{matrix}MN^2=NH.NP=4.\left(12+4\right)=64\\MP^2=HP.NP=12\left(12+4\right)=192\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}MN=8\left(cm\right)\\MP=8\sqrt{3}\left(cm\right)\end{matrix}\right.\)
Xét ΔMNP vuông tại M có MK là đường cao
nên \(PM^2=PK\cdot PN\)
=>x(x+6)=16
=>x=2
Xét `\triangle MNP` vuông tại `M` có: `MK` là đường cao
`=>MP^2=PK.PN` (Ht giữa cạnh và đường cao)
`=>MP^2=PK.(PK+KN)`
`=>4^2=x(x+6)`
`<=>x^2+6x-16=0`
`<=>(x+8)(x-2)=0`
`<=>` $\left[\begin{matrix} x=-8\text{ (ko t/m)}\\ x=2\text{ (t/m)}\end{matrix}\right.$
Vậy `x=2`