cho a = a + 6 + 6^2 + 6^3 +.....+6^99
cho b=6^100
chứng minh rằng : a < b/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=12.34.56...99100A=12.34.56...99100
⇒A<23.45.67...100101⇒A<23.45.67...100101
⇒A2<23.45.67...100101.12.34.56...99100⇒A2<23.45.67...100101.12.34.56...99100
⇒A2<1101<1100=1102⇒A2<1101<1100=1102
⇔A<
A=12.34.56...99100A=12.34.56...99100
⇒A<23.45.67...100101⇒A<23.45.67...100101
⇒A2<23.45.67...100101.12.34.56...99100⇒A2<23.45.67...100101.12.34.56...99100
⇒A2<1101<1100=1102⇒A2<1101<1100=1102
⇔A<
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{100}\)
Ta có A =1/1.2+1/3.4+1/5.6+...+1/99.100
=(1/1.2+1/3.4)+(1/5.6+...+1/99.100)
=7/12+(1/5.6+...+1/99.100)>7/12(1)
A=1-1/2+1/3-1/4+1/5-1/6+...+1/99-1/100
=(1+1/3+1/5+...+1/99)-(1/2+1/4+..+1/100)
=(1+1/2+1/3+1/4+..+1/99+1/100)-2(1/2+1/4+....+1/100) ( Cộng thêm cả 2 vế với 1/2+1/4+..+1/100)
=(1+1/2+1/3+..+1/100)-(1+1/2+..+1/50)
=1/51+1/52+..+1/100
Dãy số trên có 50 số hang 50 chia hết cho 10 nên ta nhóm 10 số vào 1 nhóm
A=(1/51+1/52+..+1/60)+(1/61+1/62+..+1/70)+(1/71+1/72+..+1/80)+(1/81+..+1/90)+(1/91+..+1/100)
<1/50.10+1/60.10+1/70.10+1/80.10+1/90.10=1/5+1/6+1/7+1/8+1/9<1/5+1/6+1/7.3=167/210<175/210=5/6
=>A<5/6(2)
từ 1 và 2 => đpcm
\(6+6^2+\cdot\cdot\cdot+6^{10}\)
\(=6\cdot\left(1+6\right)+6^3\cdot\left(1+6\right)+\cdot\cdot\cdot+6^9\cdot\left(1+6\right)\)
\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)
\(=7\cdot\left(6+6^3+\cdot\cdot\cdot+6^9\right)⋮7\)
\(\Rightarrow6+6^2+\cdot\cdot\cdot\cdot+6^{10}⋮7\)
A = 6 + 62 + 63 + ... + 699
6A = 62 + 63 + 64 + ... + 6100
6A - A = ( 62 + 63 + 64 + ... + 6100 ) - ( 6 + 62 + 63 + ... + 699 )
5A = 6100 - 6
Vì 5A = 6100 - 6 ; B = 6100
=> 5A < B
5A < B
=> A < \(\frac{B}{5}\)
abc2 + 423 = 2abc
10abc + 2 + 423 = 2000 + abc
10abc + 425 = 2000 + abc
9abc = 1575
abc = 1575 : 9
abc = 175