Tìm GTNN của B=(1+x)(1+1/y)+(1+y)(1+1/x) trong đó x,y là các số nguyên dương thỏa x^2+y^2=1
A HI HI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\)
Xảy ra khi \(x=y=\frac{1}{2}\)
áp dùng BDT cô si chúa Pain có
\(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2y^2}}=\frac{2}{xy}\Rightarrow xy\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\ge2.\)
mà \(\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{2}\)
\(\Rightarrow\frac{xy}{2}\ge\Rightarrow xy\ge4\)
b)
áp dụng BDT cô si ta có
\(x+y\ge2\sqrt{xy}\)
lấy từ câu A ta có \(xy\ge4\) " câu a"
suy ra
\(x+y\ge2\sqrt{4}=4\)
\(\left(x-y\right)^2\ge0;\forall xy\Rightarrow x^2+y^2\ge2xy\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow x+y\ge2\sqrt{xy}\)
\(\dfrac{1}{2}=\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{2}{xy}\Rightarrow xy\ge4\Rightarrow x+y\ge2\sqrt{xy}\ge2\sqrt{4}=4\)
\(C_{min}=4\) khi \(x=y=2\)
Hoặc là:
\(\dfrac{1}{2}=\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(\dfrac{4}{x+y}\right)^2=\dfrac{8}{\left(x+y\right)^2}\)
\(\Rightarrow\left(x+y\right)^2\ge16\Rightarrow x+y\ge4\)
Ta có \(B\ge\dfrac{\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)^2}{2}\) \(=\dfrac{\left(1+\dfrac{1}{xy}\right)^2}{2}\)
Lại có \(xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{1}{4}\)
\(\Rightarrow B\ge\dfrac{\left(1+4\right)^2}{2}=\dfrac{25}{2}\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Vậy GTNN của B là \(\dfrac{25}{2}\) khi \(x=y=\dfrac{1}{2}\)
Cho x,y là các số dương thỏa mãn \(\dfrac{1}{x^2}-\dfrac{1}{y^2}=\dfrac{1}{2}\)
Tìm GTNN của C = x+y
Đề bài sai, C không có giá trị nhỏ nhất
Nếu \(\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{2}\) thì có thể tìm được min của C
\(1=2\left(\dfrac{9}{x}+\dfrac{1}{y}\right)\ge2.\dfrac{\left(3+1\right)^2}{x+y}=\dfrac{32}{x+y}\)
\(\Rightarrow x+y\ge32\)
\(A_{min}=32\) khi \(\left(x;y\right)=\left(24;8\right)\)
\(P=\left(2x+\dfrac{1}{x}\right)^2+9+\left(2y+\dfrac{1}{y}\right)^2+9-18\)
\(P\ge2\sqrt{9\left(2x+\dfrac{1}{x}\right)^2}+2\sqrt{9\left(2y+\dfrac{1}{y}\right)^2}-18\)
\(P\ge12x+12y+\dfrac{6}{x}+\dfrac{6}{y}-18\)
\(P\ge6\left(4x+\dfrac{1}{x}\right)+6\left(4y+\dfrac{1}{y}\right)-12\left(x+y\right)-18\)
\(P\ge6.2\sqrt{\dfrac{4x}{x}}+6.2\sqrt{\dfrac{4y}{y}}-12.1-18=18\)
\(P_{min}=18\) khi \(x=y=\dfrac{1}{2}\)