Cho a+b=7 và ab=12 (a<b).
Tính (a-b)^2003
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+b=7 và ab=12
=>a,b là các nghiệm của phương trình:
x^2-7x+12=0
=>x=3 hoặc x=4
=>(a,b)=(3;4) hoặc (a,b)=(4;3)
TH1: a=3; b=4
=>(a-b)^3=-1
TH2: a=4; b=3
=>(a-b)^3=1
Ta có\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
\(=49-48\)
\(=1\)
Mà \(a>b\Rightarrow a-b>0\)
\(\Rightarrow a-b=1\)
\(\Rightarrow\left(a-b\right)^{2009}=1\)
Bài 1:
Gọi UCLN(24n+7;18n+5)=d
Ta có:
[3(24n+7)]-[4(18n+5)] chia hết d
=>[72n+21]-[72n+20] chia hết d
=>1 chia hết d => d=1
=>UCLN(24n+7;18n+5)=1
b)Gọi UCLN(18n+2;30n+3)=d
Ta có:
[5(18n+2)]-[3(30n+3)] chia hết d
=>[90n+10]-[90n+9] chia hết d
=>1 chia hết d => d=1
=>UCLN(18n+2;30n+3)=1
Vì a < b, a + b = 7, a . b = 12 nên a = 3 , b = 4
Khi đó : \(\left(a-b\right)^{2009}=\left(3-4\right)^{2009}=-1\)
Có \(a=\dfrac{12}{b}\)
\(\Rightarrow a+b=\dfrac{12}{b}+b=7\\ \Rightarrow b^2-7b+12=0\\ \Leftrightarrow\left[{}\begin{matrix}b=3\Rightarrow a=4\\b=4\Rightarrow a=3\end{matrix}\right.\)
Với a = 4, b = 3, ta có: \(\left(a-b\right)^3=\left(4-3\right)^3=1\)
Với a = 3, b = 4, ta có: \(\left(a-b\right)^3=\left(3-4\right)^3=-1\)