CMR: n5 và n có số tận cùng bằng nhau(n thuộc tập hợp số nguyên)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
đơn giản thôi
6n-n=5n
mà n chẵn => 5n có tận cùng bằng 0 => n và 6n cùng chữ số tận cùng
Vì n là số chẵn
=>N có tận cùng là 0,2,4,6,8
-Xét n có tận cùng là 0
=>n đồng dư với 0(mod 10)
=>6n đồng dư với 0(mod 10)
=>6n có tận cùng là 0
-Xét n có tận cùng là 2
=>n đồng dư với 2(mod 10)
=>6n đồng dư với 12(mod 10)
=>6n đồng dư với 2(mod 10)
=>6n có tận cùng là 2
-Xét n có tận cùng là 4
=>n đồng dư với 4(mod 10)
=>6n đồng dư với 24(mod 10)
=>6n đồng dư với 4(mod 10)
=>6n có tận cùng là 4
-Xét n có tận cùng là 6
=>n đồng dư với 6(mod 10)
=>6n đồng dư với 36(mod 10)
=>6n đồng dư với 6(mod 10)
=>6n có tận cùng là 6
-Xét n có tận cùng là 8
=>n đồng dư với 8(mod 10)
=>6n đồng dư với 48(mod 10)
=>6n đồng dư với 8(mod 10)
=>6n có tận cùng là 8
Vậy n và 6n có tận cùng như nhau.
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì n là số chẵn
=>N có tận cùng là 0,2,4,6,8
-Xét n có tận cùng là 0
=>n đồng dư với 0(mod 10)
=>6n đồng dư với 0(mod 10)
=>6n có tận cùng là 0
-Xét n có tận cùng là 2
=>n đồng dư với 2(mod 10)
=>6n đồng dư với 12(mod 10)
=>6n đồng dư với 2(mod 10)
=>6n có tận cùng là 2
-Xét n có tận cùng là 4
=>n đồng dư với 4(mod 10)
=>6n đồng dư với 24(mod 10)
=>6n đồng dư với 4(mod 10)
=>6n có tận cùng là 4
-Xét n có tận cùng là 6
=>n đồng dư với 6(mod 10)
=>6n đồng dư với 36(mod 10)
=>6n đồng dư với 6(mod 10)
=>6n có tận cùng là 6
-Xét n có tận cùng là 8
=>n đồng dư với 8(mod 10)
=>6n đồng dư với 48(mod 10)
=>6n đồng dư với 8(mod 10)
=>6n có tận cùng là 8
Vậy n và 6n có tận cùng như nhau.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi ƯCLN(2n+1 ; n ) là d
=> ( 2n + 1 ) - 2n \(⋮\) d
=> 1 \(⋮\) d
=> d = 1
Vậy ..........
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : k là ƯCLN của 7n + 10 và 5n + 7
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k
Hay 5(7n + 10 ) và 7(5n + 7 )
35n + 50 và 35n + 49 chia hết cho k
=> ĐPCM
Hai bài kia bạn làm tương tư nhé , chúc may mắn
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Xét : 6n-n = 5n
Vì n chẵn nên 5n có tận cùng là 0
=> n và 6n có chữ số tận cùng giống nhau
c, Xét : n^5-n = n.(n^4-1) = n.(n^2-1).(n^2+1) = (n-1).n.(n+1).(n^2-4+5) = (n-2).(n-1).n.(n+1).(n+2) + 5.(n-1).n.(n+1)
Ta thấy : n-2;n-1;n;n+1;n+2 là 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 10 ( vì 2 và 5 là 2 số nguyên tố cùng nhau )
Lại có : (n-1).n.(n+1) chia hết cho 2 nên 5.(n-1).n.(n+1) chia hết cho 10
=> n^5-n chia hết cho 10
=> n^5-n có tận cùng là 0
=> n^5 và n có chữ số tận cùng như nhau
Tk mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Cách 1. Xét từng trường hợp n tận cùng bằng 0, 2, 4, 6, 8 thì 6n tận cùng cũng như vậy.
a) n là số chẵn
\(\Rightarrow\) n = 2k
\(\Rightarrow\) 6n = 12k
Vì 12 có tận cùng như 2 nên 12k có tận cùng như 2k.
\(\Rightarrow\) n và 6n có tận cùng như nhau
\(\Rightarrow\) ĐPCM
Ta có n^5 - n = n (n^4 - 1) = n(n^2 - 1)(n^2 + 1) = n(n + 1)(n - 1)(n^2 + 1) = n(n + 1)(n - 1)(n^2 + 5 - 4) = n(n + 1)(n - 1)( 5 + n^2 - 4 ) = 5n(n + 1)(n - 1) + n(n + 1)(n - 1)(n^2 - 4) = 5n(n + 1)(n - 1) + n(n - 1)(n + 1)(n - 2)(n + 2).
Do n( n - 1) chia hết cho 2 (là tích của 2 số tự nhiện liên tiếp) nên 5n(n + 1)(n - 1) chia hết cho 10 (=5 nhân 2) (1).
Ta có n(n - 1)(n + 1)(n - 2)(n + 2) là tích của 5 số tự nhiên liên tiếp nên nó chia hết cho 2 và 5 mà 2 và 5 nguyên tố cùng nhau nên n(n - 1)(n + 1)(n - 2)(n + 2) chia hết cho 10 (=2 nhân 5) (2).
Từ (1) và (2) => điều phải chứng minh