chứng tỏ 2 số sau là 2 số nguyên tố
2n+3va n+2
3n+1va2n+1
n+10van+11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2n-5⋮n+3\)
=>\(2n+6-11⋮n+3\)
=>\(-11⋮n+3\)
=>\(n+3\in\left\{1;-1;11;-11\right\}\)
=>\(n\in\left\{-2;-4;8;-14\right\}\)
mà n là số nguyên tố
nên \(n\in\varnothing\)
a: Gọi d=ƯCLN(2n+2;2n+3)
=>2n+3-2n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>2n+2 và 2n+3 là hai số nguyên tố cùng nhau
b: Gọi d=ƯCLN(2n+1;n+1)
=>2n+1 chia hết cho d và n+1 chia hết cho d
=>2n+2 chia hết cho d và 2n+1 chia hết cho d
=>2n+2-2n-1 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ĐPCM
Với mọi số tự nhiên n thì 1 n − 1 n + 1 = n + 1 n ( n + 1 ) − n n ( n + 1 ) = 1 n ( n + 1 )
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Gọi ƯCLN(2n+3;n+2)=d
Ta có: 2n+3 chia hết cho d;n+2 chia hết cho d
=>2n+3 chia hết cho d; 2(n+2)chia hết cho d
=> 2n+3 chia hết cho d;2n+4 chia hết cho d
=>[2n+4-(2n+3)]chia hết cho d
=>2n+4-2n-3 chia hết cho d
=>1 chia hết cho d hay d=1=> ƯCLN(2n+3;n+2)=1
Vậy với mọi số tự nhiên n thì 2 số sau 2n+3 và n+2 là số nguyên tố cùng nhau
Chúc bạn học tốt!^_^
2) Ta có : a = 10n + 8
Vì 10n = 2n.5n nên chia hết cho 2
Mà 8 chia hết cho 2
Nên : a = 10n + 8 chia hết cho 2
Ta có : a = 10n + 8 = 10......08 [(n + 1) số 0]
=> 1 + 0 + 0 + .... + 0 + 8 (n + 1 số 0 )
= 9 chia hết cho 3;9
1) đem chia p cho 2 xảy ra 2 trường hợp về số dư : dư 0 hoặc dư 1
+) nếu \(p\) chia cho 2 dư 0 \(\Rightarrow\) \(p⋮2\) ; mà \(p\) là số nguyên tố \(\Rightarrow p=2\)
khi đó \(p+3=2+3=5\) ( thỏa mãn )
\(p+5=2+5=7\) ( thỏa mãn )
\(p+11=2+11=13\) ( thỏa mãn )
+) nếu \(p\) chia cho 2 dư 1\(\Rightarrow\) \(p=2k+1\) ( \(k\in\) N* )
khi đó \(p+11=2k+1+11=2k+12=2\left(k+6\right)⋮2\)
mà \(p+11>2\Rightarrow p+11\) là hợp số ( loại )
vậy \(p=2\)