K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2019

 Đây là theo t nghĩ thôi nhá.Sai thì thôi nha.

a)Gọi căn a = x

Suy ra a= x2

Mà x>1 nên x là số nguyên dương 

=>x2>x

Hay a>căn a

Hok tốt

16 tháng 6 2019

a)\(a>1\Leftrightarrow a^2>a\Leftrightarrow a^2>\left(\sqrt{a}\right)^2\Leftrightarrow a>\sqrt{a}\)

b\(a< 1\Leftrightarrow a^2< a\Leftrightarrow a^2< \left(\sqrt{a}\right)^2\Leftrightarrow a< \sqrt{a}\)

22 tháng 7 2019

Ta co:

\(a,a-\sqrt{a}=\sqrt{a}\left(\sqrt{a}-1\right);a>1\Leftrightarrow\sqrt{a}>1\Leftrightarrow\sqrt{a}-1>0\Rightarrow\left\{{}\begin{matrix}\sqrt{a}>1\\\sqrt{a}-1>0\end{matrix}\right.\Rightarrow\sqrt{a}\left(\sqrt{a}-1\right)>0\Leftrightarrow a-\sqrt{a}>0\Leftrightarrow a>\sqrt{a}\left(\text{đpcm}\right)\)

\(b,a-\sqrt{a}=\sqrt{a}\left(\sqrt{a}-1\right);a< 1\Rightarrow0< \sqrt{a}< 1\Rightarrow\sqrt{a}-1< 0\Rightarrow\sqrt{a}\left(\sqrt{a}-1\right)< 0\left(vì:0< \sqrt{a}< 1\right)\Leftrightarrow a-\sqrt{a}< 0\Leftrightarrow a< \sqrt{a}\left(\text{đpcm}\right)\)

18 tháng 9 2020

1) Vì \(a,b>0\)\(\Rightarrow\)\(\sqrt{ab}>0\)

                          \(\Leftrightarrow\)\(2\sqrt{ab}>0\)

                          \(\Leftrightarrow\)\(a+b+2\sqrt{ab}>a+b\)

                          \(\Leftrightarrow\)\(\left(\sqrt{a}+\sqrt{b}\right)^2>a+b\)

                          \(\Leftrightarrow\)\(\sqrt{a}+\sqrt{b}>\sqrt{a+b}\)

Vậy \(\sqrt{a}+\sqrt{b}>\sqrt{a+b}\)

18 tháng 9 2020

1. Ta có: \(\left(\sqrt{a+b}\right)^2=a+b\)

              \(\left(\sqrt{a}+\sqrt{b}\right)^2=a+2\sqrt{ab}+b\)

Vì \(a>0\)\(b>0\)\(\Rightarrow\sqrt{ab}>0\)\(\Rightarrow2\sqrt{ab}>0\)

\(\Rightarrow a+b< a+2\sqrt{ab}+b\)

\(\Rightarrow\left(\sqrt{a+b}\right)^2< \left(\sqrt{a}+\sqrt{b}\right)^2\)

mà \(\hept{\begin{cases}\sqrt{a+b}>0\\\sqrt{a}+\sqrt{b}>0\end{cases}}\)\(\Rightarrow\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)( đpcm )

a: \(A=a-\sqrt{a}=\sqrt{a}\left(\sqrt{a}-1\right)\)

Vì a>1 nên \(\sqrt{a}-1>0\)

=>A>0

hay \(a>\sqrt{a}\)

b: \(A=a-\sqrt{a}=\sqrt{a}\left(\sqrt{a}-1\right)\)

Vì a<1 nên \(\sqrt{a}-1< 0\)

=>A<0

hay \(a< \sqrt{a}\)

4 tháng 8 2017

Bình phương hai vế của BĐT ta được

\(\left(\sqrt{a}+\sqrt{b}\right)^2\ge a+b\)

\(\Leftrightarrow a+2\sqrt{ab}+b\ge a+b\)

\(\Leftrightarrow2\sqrt{ab}\ge0\)(Đúng với mọi a,b lớn hơn 0)

Vậy \(\sqrt{a+b}\le\sqrt{a}+\sqrt{b}\)

4 tháng 8 2017

Bình phương 2 vế

\(a+b+2\sqrt{ab}\ge a+b\)

\(\Leftrightarrow2\sqrt{ab}\ge0\)  (luôn đúng)  

Đẳng thức xảy ra \(\Leftrightarrow\)  a = 0 hoặc b = 0

\(\sqrt{a+b}^2=a+b\)

\(\left(\sqrt{a}+\sqrt{b}\right)^2=a+2\sqrt{ab}+b>a+b\)

\(\Rightarrow\sqrt{a+b}^2< \left(\sqrt{a}+\sqrt{b}\right)^2\Rightarrow\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)

=>đpcm