Siêu khó nhé `bb:`
Tìm nghiệm của `x^2 + 4x + 2`
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)
Dấu ''='' xảy ra khi x = 2
b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)
Dấu ''='' xảy ra khi x = -1
Bài 1 :
a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)
c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
Bài 1:
Trên hình dưới, hai đường thẳng a, b song song với nhau, đường thẳng c cắt a tại A, cắt b tại B.
a) Lấy một cặp góc so le trong (chẳng hạn cặp góc A4,B1A4,B1) rồi đo xem hai góc đó có bằng nhau hay không?
b) Hãy lí luận vì sao ˆA4=ˆB1A4^=B1^ theo gợi ý sau:
- Nếu ˆA4≠ˆB1A4^≠B1^ thì qua A ta vẽ tia Ap sao cho ˆPAB=ˆB1.PAB^=B1^.
- Thế thì AP // b, vì sao?
- Qua A, vừa có a // b, vừa có AP // b, thì sao?
Kết luận: Đường thẳng AP và đường thẳng a chỉ là một. Nói cách khác, ˆPAB=ˆA4PAB^=A4^ từ đó ˆA4=ˆB1.A4^=B1^.
\(\left(1\right)< =>-3\left(x-1\right)\left(x+1\right)\left(3x^2-8x-4\right)=0=>\orbr{\begin{cases}x=1\\x=\frac{4-2\sqrt{7}}{3};\frac{4+2\sqrt{7}}{3}\end{cases}.}\)
Thu gọn: M(x) = 4x^3 + 2x^4 - x^2 - x^3 + 2x^2 - x^4 +1 - 3x^3 = x^4 + x^2 +1
Do x^4 lớn hơn hoặc = 0 và x^2 lớn hơn hoặc = 0 vs mọi x => x^4 + x^2 +1 vô nghiệm
\(M\left(x\right)=4^3+2x^4-x^2-x^3+2x^2-x^4+1-3x^3\)
\(M\left(x\right)=x^4+x^2+1\)
Vì : \(x^4\ge0\forall x\)
\(x^2\ge0\forall x\)
\(\Rightarrow x^4+x^2\ge0\forall x\Rightarrow x^4+x^2+1>0\forall x\)
=> M(x) vô nghiệm
Ta xét `: x^2 + 4x + 2 = 0`
`=> x^2 + 2x + 2x + 2 =0`
`=> x^2 + 2x + 2x + 4 =2`
`=> ( x + 2 )^2 = 2 =` \(\sqrt{2}^2\) `=` \(-\left(\sqrt{2}\right)^2\)
`=> x + 2 =` \(\sqrt{2}\) hoặc `x + 2=` \(-\sqrt{2}\)
`=> x =` \(\sqrt{2}-2\) hoặc `x =` \(-\sqrt{2}-2\)
Vậy `x in {` \(\sqrt{2}-2\) `;` \(-\sqrt{2}-2\) }` là nghiệm của `x^2 + 4x + 2`
Nghiệm của bài này khá lẻ `.`