tìm max của \(A=\frac{x}{\left(x+2015\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a Tách \(M=2+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\le2+1=3\)
Dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2
b,:\(N\ge\frac{\left(1+\frac{2015}{x}+1+\frac{2015}{y}\right)^2}{2}=\frac{\left(2+2015\left(\frac{1}{x}+\frac{1}{y}\right)\right)^2}{2}\)
áp dunngj svac =>\(N\ge\frac{\left(2+2015\left(\frac{\left(1+1\right)^2}{x+y}\right)\right)^2}{2}=\frac{\left(2+\frac{2015.4}{2015}\right)^2}{2}=18\)
dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2
Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt a+b=x;b+c=y;c+a=z
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)
Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)
a)Áp dụng BĐT (x+y)^2>=4xy>>>(3a+5b)^2>=4.3a.5b>>>144>=60ab>>>ab<=12/5
Dấu=xảy ra khi 3a=5b hay khi a=7,5;b=4.5(không nên dùng Cô-si vì không chắc chắn là số dương).
b)Áp dụng BĐT Cô-si>>>(y+10)^2>=40y(do ở đây y>0 nên có thể dùng Cô-si)>>>A<=y/40y=1/40
Dấu= xảy ra khi y=10.
c)A=(x^2+x+1)/x^2+2x+1=1/2(2x^2+2x+1)/x^2+2x+1>>>A/2=(x^2+2x+1)/(x^2+2x+1)+x^2/(x^2+2x+1))>=1+0=1
Dấu= xảy ra khi x=0
\(B=\frac{\left(x+a\right)\left(x+b\right)}{x}=\frac{x^2+x\left(a+b\right)+ab}{x}=x+\frac{ab}{x}+\left(a+b\right)\)
Áp dụng bđt Cauchy : \(x+\frac{ab}{x}\ge2\sqrt{x.\frac{ab}{x}}=2\sqrt{ab}\)
\(\Rightarrow B\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)
Dấu "=" xảy ra khi \(x=\frac{ab}{x}\Rightarrow................\)
Vậy ......................
Bài tìm MAX tồn tại hai giá trị , do k có điều kiện ràng buộc biến x
ta có \(\frac{2}{\sqrt{x}}-z=\frac{2\sqrt{xyz}}{\sqrt{x}}-z\)\(=2\sqrt{yz}-z\le y+z-z=y\)THEO bđt côsi
Tương tự \(\frac{2}{\sqrt{y}}-x\le z\)và \(\frac{2}{\sqrt{z}}-y\le x\)
\(\Rightarrow A\le xyz=1\)
VẬY MAX A=1 TẠI x=y=z=1
a)Vì |x−2015|= 1/2 nên x-2015=-1/2 hoặc x-2015=1/2
Nếu x-2015=-1/2 thì
x=2015+(-1)/2
x=4029/2
Nếu x-2015=1/2 thì
x=2015+1/2
x=4031/2
Vậy x=4029/2
hoặc x=4031/2
b)
Nếu x>2016 thì |x−2015|=x-2015 ,|x−2016|=x-2016
Khi đó: |x−2015|+|x−2016|=2017
=>x-2015+x-2016=2017
=>2x-4031=2017
=>2x=6048=>x=3024(thỏa mãn x>2016)
Nếu 2015<x<2016 thì |x−2015|=x-2015,
|x−2016|=2016-x. khi đó
|x−2015|+|x−2016|=2017
=>x-2015+2016-x=2017
=>1=2017(vô lý loại)
Nếu x>2015 thì |x−2015|=2015-x,|x−2016|=2016-x
Khi đó:
|x−2015|+|x−2016|=2017
=>2015-x+2016-x=2017
=>4031-2x=2017
=>2x=2014=>x=1007(thỏa mãn x<2015)
Vậy x=1007 hoặc x=3024
\(A=\frac{x+2015-2015}{\left(x+2015\right)^2}=\frac{1}{x+2015}-\frac{2015}{\left(x+2015\right)^2}\)
Đặt \(y=\frac{1}{x+2015}\)=> \(A=y-2015y^2\)
\(A=-2015\left(y^2-2.\frac{1}{4030}.y+\frac{1}{4030^2}\right)+\frac{2015}{4030^2}=-2015\left(y-\frac{1}{4030}\right)^2+\frac{1}{8060}\le0+\frac{1}{8060}\)
=> A max = 1/8060 khi \(y=\frac{1}{4030}\Rightarrow\frac{1}{x+2015}=\frac{1}{4030}\Rightarrow x+2015=4030\)=> x = 2015