Cho a, b dương thỏa mãn a+b=1 chứng minh: \(2\left(a^4+b^4\right)+\frac{1}{4ab}>=\frac{5}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)
\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)
\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)

Áp dụng bất đẳng thức Bunhiacopxki ta được:
\(\frac{a^2}{a+9bca+4a\left(b-c\right)^2}+\frac{b^2}{b+9cab+4b\left(c-a\right)^2}+\frac{c^2}{c+9abc+4c\left(a-b\right)^2}\) \(\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)+9abc+9abc+9abc+4a\left(b-c\right)^2+4b\left(c-a\right)^2+4c\left(a-b\right)^2}\) \(=\frac{1}{1+27abc+4\left(ab^2+ac^2-2abc+bc^2+ba^2-2abc+ca^2+cb^2-2abc\right)}\) \(=\frac{1}{1+3abc+4\left(ab^2+a^2b+b^2c+c^2b+ac^2+c^2a\right)}\)
Do đó ta cần chứng minh \(1+3abc+4.\) (\(a^2b+ab^2+b^2c+bc^2+ca^2+c^2a\) ) \(\le2\)
\(\Leftrightarrow3abc+4\) (\(a^2b+b^2a+b^2c+bc^2+c^2a+ca^2\) )\(\le1=\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow a^3+b^3+c^3+3abc\ge a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)
\(\Leftrightarrow a\left(a-b\right)\left(a-c\right)+b\left(b-c\right)\left(b-a\right)+c\left(c-a\right)\left(c-b\right)\ge0\) (đúng do bất đẳng thức Schur).
Dấu "=" xảy ra khi \(a=b=c>0\) .
Dấu "=" xảy ra

(
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhh
hhhhhhhhhhhhh

bạn xem bài này tại đây:
http://d.violet.vn/uploads/resources/615/2779702/preview.swf