Cho 2 số dương s và b có a+b=1 chứng minh:
\(\frac{1}{ab}+\frac{1}{a^2+b^2}>=6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B3 mk tìm đc cách giải r nhưng bạn nào muốn thì trả lời cg đc
Các bạn giải giúp mình B2 và B5 nhé. Mấy bài kia mình giải được rồi.
\(A=\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{1}{2ab}+\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)\)
ta có : \(\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)\ge\frac{\left(1+1\right)^2}{\left(2ab+a^2+b^2\right)}=\frac{4}{\left(a+b\right)^2}=4\)
và \(1=a+b\ge2\sqrt{ab}\Leftrightarrow ab\le\frac{1}{4}\Leftrightarrow\frac{1}{2ab}\ge2\)
=> A >/ 6 (dpcm)
\(S=\frac{1}{a^2+b^2}+\frac{1}{ab}+4ab=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(\frac{1}{4ab}+4ab\right)+\frac{1}{4ab}\)
\(\ge\frac{4}{a^2+b^2+2ab}+2.\sqrt{\frac{4ab}{4ab}}+\frac{1}{\left(a+b\right)^2}=4+2+1=7\)
Em mới vừa nghĩ ra cách khác )):
\(VT=\frac{a^2+b^2}{a^2b^2}+\frac{4}{a^2-2ab+b^2}=a^2+b^2+\frac{4}{a^2+b^2-2}\)
\(=a^2+b^2-2+\frac{4}{a^2+b^2-2}+2\)
\(\ge2\sqrt{\left(a^2+b^2-2\right).\frac{4}{a^2+b^2-2}}+2=6\)
Áp dụng bất đẳng thức Min.cop.xki
\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
Dấu "=" xảy ra khi \(\frac{a}{c}=\frac{b}{d}\) (Chứng minh bằng biến đổi tương đương)
Áp dụng:
\(S=\sqrt{a^2+\frac{1}{b+c}}+\sqrt{b^2+\frac{1}{c+a}}+\sqrt{c^2+\frac{1}{a+b}}\ge\sqrt{\left(a+b\right)^2+\left(\frac{1}{\sqrt{b+c}}+\frac{1}{\sqrt{c+a}}\right)^2}+\sqrt{c^2+\frac{1}{a+b}}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{\sqrt{a+b}}+\frac{1}{\sqrt{b+c}}+\frac{1}{\sqrt{c+a}}\right)^2}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{9}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}}\right)^2}\)
Theo Bunhiacopxki: \(\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+a}\right)^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)=6\left(a+b+c\right)\)
\(\Rightarrow\left(a+b+c\right)^2+\frac{81}{\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2}\ge\left(a+b+c\right)^2+\frac{81}{6\left(a+b+c\right)}\)
\(=\frac{\left(a+b+c\right)^2}{32}+\frac{81}{12\left(a+b+c\right)}+\frac{81}{12\left(a+b+c\right)}+\frac{31}{32}\left(a+b+c\right)^2\)
\(\ge3\sqrt[3]{\frac{\left(a+b+c\right)^2}{32}.\frac{81}{12\left(a+b+c\right)}.\frac{81}{12\left(a+b+c\right)}}+\frac{31}{32}.6^2\)
\(=\frac{153}{4}=\left(\frac{3\sqrt{17}}{2}\right)^2\)
\(\Rightarrow S\ge\frac{3\sqrt{17}}{2}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=2\).