K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2021

a,\(lim\dfrac{n^2-2n}{5n+3n^2}=lim\dfrac{1-\dfrac{2}{n}}{\dfrac{5}{n}+3}=\dfrac{1}{3}\)

b,\(lim\dfrac{n^2-2}{5n+3n^2}=lim\dfrac{1-\dfrac{2}{n^2}}{\dfrac{5}{n}+3}=\dfrac{1}{3}\)

c,\(lim\dfrac{1-2n}{5n+3n^2}=lim\dfrac{1-2n}{n\left(5+3n\right)}=lim\dfrac{\dfrac{1}{n}-2}{1\left(\dfrac{5}{n}+3\right)}=-\dfrac{2}{3}\)

d,\(lim\dfrac{1-2n^2}{5n+5}=lim\dfrac{\left(1-n\sqrt{2}\right)\left(1+n\sqrt{2}\right)}{5n+5}=lim\dfrac{\left(\dfrac{1}{n}-\sqrt{2}\right)\left(\dfrac{1}{n}+\sqrt{2}\right)}{5+\dfrac{5}{n}}=\dfrac{-2}{5}\)

 

4 tháng 7 2017

2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1

Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1

3) Ta có : 5n - 1 chia hết chi n - 2  

=> 5n - 10 + 9 chia hết chi n - 2 

=> 5(n - 2) + 9 chia hết chi n - 2 

=> n - 2 thuộc Ư(9) = {1;3;9}

Ta có bảng : 

n - 2139
n3511
4 tháng 7 2017

1) Ta có : 2n + 3 chia hết cho 3n + 1 

<=> 6n + 9 chia hết cho 3n + 1

<=> 6n + 2 + 7 chia hết cho 3n + 1

=>  7 chia hết cho 3n + 1

=> 3n + 1 thuộc Ư(7) = {1;7}

Ta có bảng : 

3n + 117
3n06
n02

Vậy n thuộc {0;2}

13 tháng 2 2016

Đơn giản

duyệt đi

9 tháng 12 2015

tick cho mik đi

9 tháng 12 2015

chua lam ma ban da muon tick

1 tháng 1 2020

a) Vì 1-2n là Ư(3n+2)

\(\Rightarrow\)3n+2 \(⋮\) 1-2n

\(\Rightarrow\)-3n-2 \(⋮\) 2n-1

\(\Rightarrow\)-2(-3n-2) \(⋮\) 2n-1

\(\Rightarrow\)6n+4 \(⋮\)2n-1

\(\Rightarrow\)3(2n-1)+7 \(⋮\)2n-1

\(\Rightarrow\)\(⋮\) 2n-1

\(\Rightarrow\)2n-1 \(\in\)Ư(7)

Ta có:

Ư(7) \(\in\){\(\pm\)1; \(\pm\)7}

Lập bảng:

2n-1-11-77
n01-34

Vậy n \(\in\){0;1;-3;4}

b) 5n+1 \(⋮\)2n-3

\(\Leftrightarrow\)2(5n+1) \(⋮\)2n-3

\(\Leftrightarrow\)10n+2 \(⋮\)2n-3

\(\Leftrightarrow\)5(2n-3)+17 \(⋮\)2n-3

\(\Leftrightarrow\)17 \(⋮\)2n-3

\(\Rightarrow\)2n-3 \(\in\)Ư(17)

Ta có:

Ư(17)\(\in\){\(\pm\)1;\(\pm\)17}

Lập bảng:

2n-3-11-1717
n12-710

Vậy n \(\in\){1;2;-7;10}

5 tháng 7 2017

Ta có n-3=n+4-7

6)=>n-4+7 chia hết cho n+4

=>7 chia hết cho n+4

=> n+4 thuộc Ư(7)

=> n+4 thuộc {1, -1,7,-7}

=> n thuộc {-3,-5,3,-11}

28 tháng 3 2020

lim \(\frac{-3n^2+5n+1}{2n^2-n+3}\)

= lim \(\frac{-3+\frac{5}{n}+\frac{1}{n^2}}{2-\frac{1}{n}+\frac{3}{n^2}}\)

= -3/2

11 tháng 2 2022

\(a,lim\dfrac{2n+1}{-3n+2}\)

\(=lim\dfrac{2+\dfrac{1}{n}}{-3+\dfrac{2}{n}}=-\dfrac{2}{3}\)

\(b,lim\dfrac{5n^3-2n+1}{n-2n^3}\)

\(=lim\dfrac{5-\dfrac{2}{n^2}+\dfrac{1}{n^3}}{\dfrac{1}{n^2}-2}=\dfrac{5}{-2}\)

NV
7 tháng 2 2021

\(a=\lim\dfrac{5n\left(n+\sqrt{n^2-n-1}\right)}{n+1}=\lim\dfrac{5\left(n+\sqrt{n^2-n-1}\right)}{1+\dfrac{1}{n}}=\dfrac{+\infty}{1}=+\infty\)

\(b=\lim\dfrac{\sqrt{\dfrac{1}{n}+\sqrt{\dfrac{1}{n^3}+\dfrac{1}{n^4}}}}{1-\dfrac{1}{\sqrt{n}}}=\dfrac{0}{1}=0\)

\(c=\lim\dfrac{\sqrt{2n^2-1+\dfrac{7}{n^2}}}{3+\dfrac{5}{n}}=\dfrac{+\infty}{3}=+\infty\)

\(d=\lim\dfrac{\sqrt{3+\dfrac{2}{n}}-1}{3-\dfrac{2}{n}}=\dfrac{\sqrt{3}-1}{3}\)