K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2017

A=(3+3^2+3^3+3^4)+.....+(3^97+3^98+3^99+3^100)

=3(1+3+3^2+3^3)+3^2(1+3+3^2+3^3)+....+3^97(1+3+3^2+3^3)

=3.40+3^2.40++....+3^97.40 chia hêt cho 40

28 tháng 3 2017

câu này dễ mà

 A= 3+3^2+3^3+3^4+..........+3^100.

A= (3+3^2+3^3+3^4)+...+(3^97+3^98+3^99+3^100) ( nhóm 4 số lại)

A= 3(1+3+3^2+3^3)+...+ 3^97(1+3+3^2+3^3) ( rút ra)

A=3x40+3^5x40+...+3^97x40

A=40(3+3^5+..+3^97) chia hết cho 40

1 tháng 4 2016

 ĐẶt A=3+3^2+3^3+....+3^100

 A= 3(1+3+3^2+3^3) +3^5(1+3+3^2+3^3)+...... + 3^97 ( 1 + 3 + 3^2 + 3^3)
A=3.40 +3^5.40+.....+3^97.40 

Vì 40 chia hết cho 40 => 3.40 +3^5.40+.....+3^97.40 
Vậy A chia hết cho 40. 

1 tháng 4 2016

A=3+32+33+34+...+3100 chia hết cho 40

A=(3+32+33+34)+(35+36+37+38)+...+(397+398+399+3100)

A=3.(1+3+32+33)+35.(1+3+32+33)+...+397.(1+3+32+33)

A=3.40+35.40+...+397.40

A=40.(3+35+...+397) chia hết cho 40 (đpcm)

25 tháng 10 2015

nhiêu thế nhìn hoa cả mắt @_@

30 tháng 6 2016

B = (1 + 3) + (32+33)+.....+(389+390)

  = 4 + 32 .(1 + 3) + .....+390.(1+3)

 = 1 .4 + 32.4 + ..... +390.4

= 4.(1 + 32 + .... +390) chia hết cho 4

6 tháng 9 2018

\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)

\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)

\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)

\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)

16 tháng 11 2015

Số các số hạng là:

100 - 1 + 1 = 100 (số)

Tổng: 100.(100 + 1):2 = 5050

Vậy không chia hết cho 4

=> Đề sai     

5 tháng 4 2016

 ĐẶt A=3+3^2+3^3+....+3^100 
Chia A thành từng nhóm 4 số (vì A có 100 số) ta được 25 nhóm 
A= 3(1+3+3^2+3^3) +3^5(1+3+3^2+3^3)+...... 
+3^97(1+3+3^2+3^3) 
A=3.40 +3^5.40+.....+3^97.40 
Vậy A chia hết cho 40. 

5 tháng 4 2016

C=\(3+3^2+3^3+3^4+...+3^{100}\)

\(3\times\left(1+3+3^2+3^3+...+3^{99}\right)\)

\(3\times\left[\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\right]\)

\(3\times\left(40+3^4\times40+...+3^{96}\times40\right)\)

\(3\times40\times\left(1+3^4+...+3^{96}\right)\)chia het cho 40

=> C chia het cho 40