Giải hệ phương trình:
\(\sqrt{x}+\sqrt{y}=5\)
\(x\sqrt{y}+y\sqrt{x}=35\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thi chuyên SP hả em, bài này sử dụng Liên hợp với đánh giá em nhé:
Đầu tiên trừ 2 về mình có là
\(x\sqrt{y+4}+x\sqrt{y+11}-y\sqrt{x+4}-y\sqrt{x+11}=0\)
Từ hệ mình dễ dàng suy ra đc x,y>0
Anh liên hợp cho 1 cái nha
\(x\sqrt{y+4}-y\sqrt{x+4}=\sqrt{x^2y+4x^2}-\sqrt{y^2x+4y^2}=\dfrac{x^2y-y^2x+4x^2-4y^2}{\sqrt{.........}+\sqrt{.......}}=\left(x-y\right).\dfrac{xy+4x+4y}{\sqrt{.........}+\sqrt{............}}\)
Cái kia em cx liên hợp tương tự, đặt x-y của cả 2 cái khi liên hợp xong phương trình sẽ là
\(\left(x-y\right)\left(\dfrac{xy+4x+4y}{\sqrt{...}+\sqrt{...}}+\dfrac{xy+11x+11y}{\sqrt{........}+\sqrt{.....}}\right)=0\) Cái trong ngoặc to đùng hiển nhiên >0 với x,y>0. DO đó x-y=0 hay x=y
EM thế vào phương trình ban đầu thì có \(x\sqrt{x+4}+x\sqrt{x+11}=35\)
Đến đây thì nhẩm đc x=5 thoả mãn em giải bằng đánh giá:
Với x=5 suy ra......=35
Với x>5 suy ra......>35
Với x<5 suy ra.....<35
Kết luận đc x=5, do đó y=5
Note: hướng làm em nhé, bổ sung thêm điều kiện xác định linh tinh zô
câu này quen ha
cái này giả sử x+1>=y-5, rồi cho chúng = nhau
hoặc liên hợp cũng được (PT1)
\(\left\{{}\begin{matrix}x+\sqrt{5}y=\sqrt{5}\\\sqrt{15}x-\sqrt{5}y=\sqrt{15}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\sqrt{5}y=\sqrt{5}\\\left(\sqrt{15}+1\right)x=\sqrt{15}+\sqrt{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\sqrt{15}+\sqrt{5}}{\sqrt{15}+1}\\y=\dfrac{\sqrt{15}-\sqrt{3}}{\sqrt{15}+1}\end{matrix}\right.\)
câu này quá dễ
gọi \(\sqrt{x}=A,\sqrt{y}=B\)
Ta có tự giải nha
Điều kiện: x; y \(\ge\) 0
phương trình thứ hai <=> \(\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)=35\)
thế phương trình thứ nhất ta được \(\sqrt{xy}.5=35\Leftrightarrow\sqrt{xy}=7\)
Đặt \(\sqrt{x}+\sqrt{y}=5=S\); \(\sqrt{x}.\sqrt{y}=7=P\)
Theo hệ quả đl Vi - ét ta có: \(S^2-4P=25-4.7=-3<0\)
=> không tồn tại \(\sqrt{x};\sqrt{y}\) thoả mãn
Vậy hệ vô nghiệm