( x + \(\dfrac{1}{2}\) )\(^3\) + 1 = -7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(\dfrac{7^4\cdot3-7^3}{7^4\cdot6-7^3\cdot2}\)
\(=\dfrac{7^3\cdot\left(7\cdot3-1\right)}{7^3\cdot2\left(7\cdot3-1\right)}\)
\(=\dfrac{1}{2}\)
c) Ta có: \(E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)
\(\Leftrightarrow\dfrac{1}{3}\cdot E=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\)
\(\Leftrightarrow E-\dfrac{1}{3}\cdot E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\right)\)
\(\Leftrightarrow E\cdot\dfrac{2}{3}=1-\dfrac{1}{3^{101}}\)
\(\Leftrightarrow E=\dfrac{3-\dfrac{3}{3^{101}}}{2}=\dfrac{1-\dfrac{1}{3^{100}}}{2}\)
a) \(\Leftrightarrow\dfrac{3}{2}:x=\dfrac{1}{2}\\ \Leftrightarrow x=\dfrac{3}{2}:\dfrac{1}{2}\\ \Leftrightarrow x=3\)
b) \(\Leftrightarrow x=\dfrac{7}{9}-\dfrac{2}{3}\\ \Leftrightarrow x=\dfrac{1}{9}\)
c) \(\Leftrightarrow x=\dfrac{8}{7}:\dfrac{6}{7}\\ \Leftrightarrow x=\dfrac{4}{3}\)
d) \(\Leftrightarrow x=\dfrac{9}{5}-\dfrac{3}{7}\\ \Leftrightarrow x=\dfrac{48}{35}\)
a) x = 3
b) x = \(\dfrac{1}{9}\)
c) x = \(\dfrac{4}{3}\)
d)\(\dfrac{48}{35}\)
a) ĐKXĐ: \(x\ne1\)
Ta có: \(\dfrac{7x-3}{x-1}=\dfrac{2}{3}\)
\(\Leftrightarrow3\left(7x-3\right)=2\left(x-1\right)\)
\(\Leftrightarrow21x-9=2x-2\)
\(\Leftrightarrow21x-2x=-2+9\)
\(\Leftrightarrow19x=7\)
\(\Leftrightarrow x=\dfrac{7}{19}\)
Vậy: \(S=\left\{\dfrac{7}{19}\right\}\)
Lời giải:
a.
$\frac{2}{3}x-\frac{7}{6}=\frac{12}{7}-\frac{1}{2}=\frac{17}{14}$
$\frac{2}{3}x=\frac{17}{14}+\frac{7}{6}=\frac{50}{21}$
$x=\frac{50}{21}: \frac{2}{3}=\frac{25}{7}$
b.
$(1\frac{1}{2}+\frac{5}{3}-\frac{1}{6}):x=\frac{3}{4}-\frac{1}{2}$
$3:x=\frac{1}{4}$
$x=3: \frac{1}{4}=12$
a, - \(\dfrac{2}{5}\) + \(\dfrac{4}{5}\).\(x\) = \(\dfrac{3}{5}\)
\(\dfrac{4}{5}\).\(x\) = \(\dfrac{3}{5}\)+ \(\dfrac{2}{5}\)
\(\dfrac{4}{5}\).\(x\) = 1
\(x\) = \(\dfrac{5}{4}\)
b, - \(\dfrac{3}{7}\) - \(\dfrac{4}{7}\): \(x\) = \(\dfrac{2}{5}\)
\(\dfrac{4}{7}\): \(x\) = - \(\dfrac{3}{7}\) - \(\dfrac{2}{5}\)
\(\dfrac{4}{7}\): \(x\) = - \(\dfrac{29}{35}\)
\(x\) = \(\dfrac{4}{7}\): (- \(\dfrac{29}{35}\) )
\(x\) = - \(\dfrac{20}{29}\)
c, \(\dfrac{4}{7}\).\(x\) + \(\dfrac{2}{3}\) = - \(\dfrac{1}{5}\)
\(\dfrac{4}{7}\).\(x\) = -\(\dfrac{1}{5}\) - \(\dfrac{2}{3}\)
\(\dfrac{4}{7}\).\(x\) = - \(\dfrac{13}{15}\)
\(x\) = - \(\dfrac{13}{15}\): \(\dfrac{4}{7}\)
\(x\) = - \(\dfrac{91}{60}\)
a, \(\dfrac{3}{7}\)\(x\)- \(\dfrac{2}{3}\)\(x\) = \(\dfrac{10}{21}\)
(\(\dfrac{3}{7}\) - \(\dfrac{2}{3}\)) \(\times\) \(x\) = \(\dfrac{10}{21}\)
- \(\dfrac{5}{21}\) \(\times\) \(x\) = \(\dfrac{10}{21}\)
\(x\) = \(\dfrac{10}{21}\) : (-\(\dfrac{5}{21}\))
\(x\) = -2
b, \(\dfrac{7}{35}\) : (\(x-\dfrac{1}{3}\)) = - \(\dfrac{2}{25}\)
\(x\) - \(\dfrac{1}{3}\) = \(\dfrac{7}{35}\) : (- \(\dfrac{2}{25}\))
\(x\) - \(\dfrac{1}{3}\) = - \(\dfrac{5}{2}\)
\(x\) = - \(\dfrac{5}{2}\) + \(\dfrac{1}{3}\)
\(x\) = - \(\dfrac{13}{6}\)
c, 3.(\(x\) - \(\dfrac{1}{2}\)) - 5.(\(x\) + \(\dfrac{3}{5}\)) = - \(x\)+ \(\dfrac{1}{5}\)
3\(x\) - \(\dfrac{3}{2}\) - 5\(x\) - 3 = - \(x\) + \(\dfrac{1}{5}\)
- \(x\) + 5\(x\) - 3\(x\) = - \(\dfrac{3}{2}\) - 3 - \(\dfrac{1}{5}\)
\(x\) = - \(\dfrac{47}{10}\)
\(a,\dfrac{3}{7}x-\dfrac{2}{3}x=\dfrac{10}{21}\\ \Rightarrow x\left(\dfrac{3}{7}-\dfrac{2}{3}\right)=\dfrac{10}{21}\\ \Rightarrow x.-\dfrac{5}{21}=\dfrac{10}{21}\\ \Rightarrow x=-2\\ b,\dfrac{7}{35}:\left(x-\dfrac{1}{3}\right)=-\dfrac{2}{25}\\ \Rightarrow\dfrac{1}{5}:\left(x-\dfrac{1}{3}\right)=-\dfrac{2}{25}\\ \Rightarrow x-\dfrac{1}{3}=-\dfrac{5}{2}\\ \Rightarrow x=-\dfrac{13}{6}\\ c,3.\left(x-\dfrac{1}{2}\right)-5.\left(x+\dfrac{3}{5}\right)=-x+\dfrac{1}{5}\\ \Rightarrow3x-\dfrac{3}{2}-5x+5=-x+\dfrac{1}{5}\)
\(\Rightarrow x\left(3-5\right)-\dfrac{3}{2}+5=-x+\dfrac{1}{5}\\ \Rightarrow-2x-\dfrac{13}{2}=-x+\dfrac{1}{5}\\ \Rightarrow-x-\dfrac{13}{5}=\dfrac{1}{5}\\ \Rightarrow x=\dfrac{1}{5}-\dfrac{13}{5}\\ \Rightarrow x=-\dfrac{12}{5}.\)
a: x+2/5=1/2
=>x=1/2-2/5=5/10-4/10=1/10
b; x-2/5=2/7
=>x=2/7+2/5=10/35+14/35=24/35
c: 3/5-x=1/10
=>x=3/5-1/10=6/10-1/10=5/10=1/2
d: x*3/4=9/20
=>x=9/20:3/4=9/20*4/3=36/60=3/5
e: x:1/7=14
=>x=14*1/7=2
f: =>x+1/4=2/5:1/2=4/5
=>x=4/5-1/4=16/20-5/20=11/20
g: =>x*2/3=9/12+2/3=3/4+2/3=9/12+8/12=17/12
=>x=17/12:2/3=17/12*3/2=51/24=17/8
a) (2x - 3)(6 - 2x) = 0
=> \(\left[{}\begin{matrix}2x-3=0\\6-2x=0\end{matrix}\right.=>\left[{}\begin{matrix}2x=3\\2x=6\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=3\end{matrix}\right.\)
b) \(5\dfrac{4}{7}:x=13=>\dfrac{39}{7}:x=13=>x=\dfrac{39}{7}:13=>x=\dfrac{3}{7}\)
c) \(2x-\dfrac{3}{7}=6\dfrac{2}{7}=>2x-\dfrac{3}{7}=\dfrac{44}{7}=>2x=\dfrac{47}{7}=>x=\dfrac{47}{14}\)
d) \(\dfrac{x}{5}+\dfrac{1}{2}=\dfrac{6}{10}=>\dfrac{x}{5}=\dfrac{6}{10}-\dfrac{1}{2}=>\dfrac{x}{5}=\dfrac{1}{10}=>x.10=5=>x=\dfrac{1}{2}\)
e) \(\dfrac{x+3}{15}=\dfrac{1}{3}=>\left(x+3\right).3=15=>x+3=5=>x=2\)
a) ĐKXD: x ≠ 2
\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{3-x}{x-2}=-3\)
\(\Leftrightarrow\dfrac{1-3+x}{x-2}=-3\)
\(\Leftrightarrow\dfrac{-2+x}{x-2}=-3\)
\(\Leftrightarrow-2+x=-3\left(x-2\right)\)
\(\Leftrightarrow-2+x=-3x+6\)
\(\Leftrightarrow x+3x=6+2\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\) (loại vì không thỏa mãn điều kiện)
Vậy S = ∅
b) ĐKXĐ: x ≠ 7
\(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
\(\Leftrightarrow\dfrac{8-x}{x-7}-\dfrac{1}{x-7}=8\)
\(\Leftrightarrow\dfrac{7-x}{x-7}=8\)
\(\Leftrightarrow-1=8\left(vô-lý\right)\)
Vậy S = ∅
P/s: Ko chắc ạ!
c) ĐKXĐ: x ≠ 1
\(\dfrac{1}{x-1}+\dfrac{2x}{x^2+x+1}=\dfrac{3x^2}{x^3-1}\)
Quy đồng và khử mẫu ta được:
\(x^2+x+1+2x\left(x-1\right)=3x^2\)
\(\Leftrightarrow x^2+x+1+2x^2-2x-3x^2=0\)
\(\Leftrightarrow-x+1=0\)
\(\Leftrightarrow x=1\) (loại vì ko t/m đk)
Vậy S = ∅
\(a)\left(\dfrac{1}{2}+1,5\right)x=\dfrac{1}{5}\)
\(\Rightarrow2x=\dfrac{1}{5}\)
\(\Rightarrow x=\dfrac{1}{10}\)
\(b)\left(-1\dfrac{3}{5}+x\right):\dfrac{12}{13}=2\dfrac{1}{6}\)
\(\Leftrightarrow-\dfrac{8}{5}+x=\dfrac{13}{6}.\dfrac{12}{13}\)
\(\Leftrightarrow-\dfrac{8}{5}+x=2\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(c)\left(x:2\dfrac{1}{3}\right).\dfrac{1}{7}=-\dfrac{3}{8}\)
\(\Leftrightarrow x:\dfrac{7}{3}=-\dfrac{3}{8}:\dfrac{1}{7}\)
\(\Leftrightarrow x=-\dfrac{21}{8}.\dfrac{7}{3}\)
\(\Leftrightarrow x=-\dfrac{49}{8}\)
\(d)-\dfrac{4}{7}x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1\dfrac{2}{3}\right)\)
\(\Leftrightarrow-\dfrac{4}{7}x+\dfrac{7}{5}=-\dfrac{3}{40}\)
\(\Leftrightarrow-\dfrac{4}{7}x=-\dfrac{59}{40}\)
\(\Leftrightarrow x=\dfrac{413}{160}\)
a)\left(\dfrac{1}{2}+1,5\right) \cdot x=\dfrac{1}{5}(21+1,5)⋅x=51
2 \cdot x=\dfrac{1}{5}2⋅x=51
x=\dfrac{1}{5}: 2x=51:2
x=\dfrac{1}{10} x=101
b) \left(-1 \dfrac{3}{5}+x\right): \dfrac{12}{13}=2 \dfrac{1}{6}(−153+x):1312=261
-1 \dfrac{3}{5}+x=\dfrac{13}{6} \cdot \dfrac{12}{13}−153+x=613⋅1312
x=2+1 \dfrac{3}{5}x=2+153
x=3 \dfrac{3}{5} x=353
c) \left(x: 2 \dfrac{1}{3}\right) \cdot \dfrac{1}{7}=\dfrac{-3}{8}(x:231)⋅71=8−3
x \cdot \dfrac{3}{7} \cdot \dfrac{1}{7}=\dfrac{-3}{8}x⋅73⋅71=8−3
x=\dfrac{-3}{8}: \dfrac{3}{49}x=8−3:493
x=\dfrac{-49}{8}=-6 \dfrac{1}{8}x=8−49=−681
d) \dfrac{-4}{7} \cdot x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1 \dfrac{2}{3}\right)7−4⋅x+57=81:(−132)
\dfrac{-4}{7} x+\dfrac{7}{5}=\dfrac{1}{8} \cdot \dfrac{-3}{5}7−4x+57=81⋅5−3
-\dfrac{4}{7} x=\dfrac{-3}{40}-\dfrac{7}{5} \\ x=\dfrac{-59}{40}: \dfrac{-4}{7}=\dfrac{413}{160}=2 \dfrac{93}{160}−74x=40−3−57x=40−59:7−4=160413=216093
\(\left(x+\dfrac{1}{2}\right)^3=-8=\left(-2\right)^3\)
\(x+\dfrac{1}{2}=-2\)
\(x=-\dfrac{5}{2}\)
\(\left(x+\dfrac{1}{2}\right)^3=-8\Leftrightarrow x+\dfrac{1}{2}=-2\Leftrightarrow x=-2-\dfrac{1}{2}=\dfrac{-5}{2}\)