(3x-1)^2-3(x-1)(x+3)>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(3x\left(x-1\right)+x-1=0\Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\Leftrightarrow\hept{\begin{cases}x-1=0\\3x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\x=\frac{1}{3}\end{cases}}}\)
\(S=\left\{1;\frac{1}{3}\right\}\)
b)\(2\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+3\right)=0\Leftrightarrow\hept{\begin{cases}2-x=0\\x+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\x=-3\end{cases}}}\)
\(S=\left\{2;-3\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
+) Lỗi nhỏ: Sai ở chỗ: \(\left|x-2+4-3x\right|=\left|-2x-2\right|\)
+) Lỗi lớn: Dấu bằng xảy ra: \(\hept{\begin{cases}\left(x-2\right)\left(4-3x\right)\ge0\\\left(-2x+2\right)\left(2x-3\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{3}{2}\le x\le1\end{cases}}\Leftrightarrow\frac{3}{2}\le x\le1\)( làm tắt )
Nhưng mà thử vào chọn x= 1=> A = 3 > 1. Nên bài này sai.
Làm lại nhé!
A = | x - 2 | + | 2 x - 3 | + | 3 x - 4 |
= | x - 2 | + | 2 x - 3 | + 3 | x - 4/3 |
= | x -2 | + | x - 4/3 | + | 2x -3 | +2 | x - 4/3 |
= ( | 2 - x | + | x - 4/3 | ) + ( | 3 - 2x | + | 2x - 8/3 | )
\(\ge\)| 2 -x + x - 4/3 | + | 3 - 2x + 2x -8/3 |
= 2/3 + 1/3 = 1
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(2-x\right)\left(x-\frac{4}{3}\right)\ge0\\\left(3-2x\right)\left(2x-\frac{8}{3}\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{4}{3}\le x\le\frac{3}{2}\end{cases}}\Leftrightarrow\frac{4}{3}\le x\le\frac{3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
2(x-3)-3(3-x)=15-3x
2x-6-9+3x=15-3x
2x+3x+3x=15+6+9
8x=30
x=30/8
x=3,75
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(\left(x-3\right)\left(2x-1\right)>0.\)
\(Th1:x-3>0;2x-1>0\)
\(x-3>0\Rightarrow x>3_{\left(1\right)}\)
\(2x-1>0\Rightarrow2x>1\Rightarrow x>\frac{1}{2}_{\left(2\right)}\)
\(\left(1\right),\left(2\right)\Rightarrow x>3`\)
\(Th2:x-3< 0;2x-1< 0\)
\(x-3< 0\Rightarrow x< 3_{\left(1\right)}\)
\(2x-1< 0\Rightarrow2x< 1\Rightarrow x< \frac{1}{2}_{\left(2\right)}\)
\(\left(1\right),\left(2\right)\Rightarrow x< \frac{1}{2}\)
b) \(\left(2-3x\right)\left(-5x+1\right)< 0\)
\(Th1:2-3x>0;-5x+1< 0\)
\(2-3x>0\Rightarrow3x>2\Rightarrow x>\frac{2}{3}_{\left(1\right)}\)
\(-5x+1< 0\Rightarrow-5x< -1\Rightarrow x< \frac{1}{5}_{\left(2\right)}\)
\(_{\left(1\right),\left(2\right)\Rightarrow}\)không xảy ra trường hợp này
\(Th2:2-3x< 0;-5x+1>0\)
\(2-3x< 0\Rightarrow3x< 2\Rightarrow x< \frac{2}{3}_{\left(1\right)}\)
\(-5x+1>0\Rightarrow-5x>-1\Rightarrow x>\frac{1}{5}_{\left(2\right)}\)
\(\left(1\right),\left(2\right)\Rightarrow\frac{1}{5}< x< \frac{2}{3}\)
\(\left(3x-1\right)^2-3\left(x-1\right)\left(x+3\right)\)
\(=9x^2-6x+1-3\left(x^2+2x-3\right)\)
\(=9x^2-6x+1-3x^2-6x+9\)
\(=6x^2-12x+10\)
\(=6\left(x^2-2x+\dfrac{10}{6}\right)\)
\(=6\left(x^2-2x.1+1-1+\dfrac{10}{6}\right)\)
\(=6\left[\left(x-1\right)^2+\dfrac{4}{6}\right]\)
\(=6\left(x-1\right)^2+4>0\forall x\inℝ\)
Vậy bất phương trình luôn đúng.