Chứng minh
A ab -ba : 9 ( a>b)
B abcabc :7 ; 11 ;13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)
b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)
c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)
a) Theo bài ra ta có:
abcabc = 1000abc + abc
= ( 1000 +1)abc
=1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
1001 chia hết cho 7 => abcabc chia hết cho 7.
1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
a/ ab+ba chia hết cho 11
Vì tổng các số chẵn -tổng các số lẻ:(b+a)-(a+b)=0 chia hết cho 11
=>Tổng ab+ba chia hết cho 11
a,ab = 10a + b
ba = 10b + a
=>ab + ba = 11(a+b) chia het cho 11.
b,ab=10*a+b
ba=10*b+a
ab-ba=9*a-9*b=9*(a-b)=> ab-ba chia hết cho 9
a) Xét tổng ab + ba = (10 x a + b) + (10 x b + a)
= 11 x a + 11 x b
= (a +b) x 11 chia hết cho 11
b) Xét hiệu ab - ba = (10a + b) - (10b + a)
= 9 x a - 9 x b
= (a - b) x 9 chia hết cho 9
\(Giải\)
Ta có \(ab-ba=\left(10a\times b\right)-\left(10b\times a\right)\)
\(=9a\times9b\)
\(=9\left(a+b\right)⋮9\)
Hay \(ab-ba⋮9\)
Vậy \(ab-ba⋮9\)\(\left(đpcm\right)\)
ab - ba = (10a + b) - (10b + a) = 10a + b - 10b - a = 9a - 9b = 9(a - b) chia hết cho 9
=> ab - ba chia hết cho 9.
a, ab - ba chia hết cho 9
Ta có :
ab - ba = ( a . 10 + b ) - ( b . 10 + a )
= a ( 10 - 1 ) - b ( 10 - 1 )
= a . 9 - b - 9
= ( a - b ) . 9
=> ab - ba chia hết cho 9
b, abcabc chia hết cho 7 ;11 ; 13
Ta có :
abcabc = abc . 1001
= abc . 11. 13. 7
=> ....
A ) Ta có : ab - ba = 10a + b - 10b - a =9a - 9b = 9 ( a - b )
Vì 9 chia hết cho 9 => 9 ( a - b ) chia hết cho 9
Vậy ab - ba chia hết cho 9
B ) Ta có :
abcabc = 1001abc = 7 . 13 . 11 . abc
Vì 7 . 13 . 11 chia hết cho 7 , 13 , 11
=> 7 . 13 . 11 . abc chia hết cho 7 , 13 , 11
Vậy abcabc chia hết cho 7 , 13 , 11