K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

chịuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

9 tháng 10 2015

 [ab(ab - 2cd) + c2d2].[ab(ab - 2) + 2(ab + 1)] = 0 

=>  ab(ab - 2cd) + c2d2 = 0 hoặc ab(ab - 2) + 2(ab + 1) = 0 

+)  ab(ab - 2cd) + c2d= 0  => (ab)2 - 2(ab).(cd) + (cd)2 = 0 => (ab)2 - (ab).(cd) - (ab).(cd) + (cd)2 = 0 

=> (ab - cd).(ab - cd) = 0 => (ab - cd)2 = 0 => ab - cd = 0 => ab = cd => \(\frac{a}{c}=\frac{d}{b}\) => a; b; c;d lập được thành 1 tỉ lệ thức

+) ab(ab - 2) + 2(ab + 1) = 0  => (ab)2 + 2 = 0  (Vô lí, vì (ab)2 + 2 > 0 với mọi a; b)

Vậy..................

17 tháng 9 2017

Ta có a> 2 và b>2 nên a(b-2)>0 và b(a-2) >0. 
Vậy a(b-2)+b(a-2) >0 <=> 2[ab -a -b] >0 <=> ab > a+ b.

10 tháng 8 2016

Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^n}\)

\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{n-1}}\)

\(5A-A=\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{n-1}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^n}\right)\)

\(4A=1-\frac{1}{5^n}< 1\)

=> \(A< \frac{1}{4}\left(đpcm\right)\)

Gọi dãy số trên là : A 

Ta có : \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+......+\frac{1}{5^n}\)

\(\Rightarrow5A=1+\frac{1}{5}+\frac{1}{5^2}+......+\frac{1}{5^{n-1}}\)

\(\Rightarrow5A-A=\left(1+\frac{1}{5^2}+.....+\frac{1}{5^{n-1}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+.....+\frac{1}{5^n}\right)\)

\(\Rightarrow4A=1-\frac{1}{5^n}< 1\)

\(\Rightarrow4A< 1\Rightarrow A< \frac{1}{4}\)

  

10 tháng 4 2017

mình ko biết nhưng k mình nha

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Vì tam giác ABC cân tại A

\( \Rightarrow \widehat B = \widehat C \Rightarrow \dfrac{1}{2}\widehat B = \dfrac{1}{2}\widehat C \Rightarrow \widehat {ABF} = \widehat {ACE}\)

b) Xét \(\Delta ECA\) và \(\Delta FBA\)có:

\(\widehat{A}\) chung

AB = AC

\(\widehat {ABF} = \widehat {ACE}\)

\( \Rightarrow \)\(\Delta ECA\)= \(\Delta FBA\)( g – c – g )

\( \Rightarrow AE = AF và EC = BF\) (2 cạnh tương ứng)

\( \Rightarrow \Delta AEF\) cân tại A

c) Xét tam giác IBC có :

\(\widehat B = \widehat C \Rightarrow \dfrac{1}{2}\widehat B = \dfrac{1}{2}\widehat C \Rightarrow \widehat {ICB} = \widehat {IBC}\)

Do đó, tam giác IBC cân tại I ( 2 góc ở đáy bằng nhau )

\( \Rightarrow IB = IC\)( cạnh tương ứng )

Vì EC = BF ( câu b) và IB = IC

\( \Rightarrow \) EC – IC = BF – BI

\( \Rightarrow \) EI = FI

\( \Rightarrow \Delta IEF\) cân tại I

11 tháng 9 2021

\(2\left(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}\right)\ge1+\dfrac{b}{b+1a}+\dfrac{c}{c+2b}+\dfrac{a}{a+2c}\)

\(\Leftrightarrow2\left(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}+\dfrac{a}{b+2a}+\dfrac{b}{c+2b}+\dfrac{c}{a+2c}\right)\ge1+\dfrac{b+2a}{b+2a}+\dfrac{c+2b}{c+2b}+\dfrac{a+2c}{a+2c}=1+1+1+1=4\)Thật vậy:

\(\dfrac{a}{b+2c}+\dfrac{a}{b+2a}+\dfrac{b}{c+2a}+\dfrac{b}{c+2b}+\dfrac{c}{a+2b}+\dfrac{c}{a+2c}=a\left(\dfrac{1}{b+2c}+\dfrac{1}{b+2a}\right)+b\left(\dfrac{1}{c+2a}+\dfrac{1}{c+2b}\right)+c\left(\dfrac{1}{a+2b}+\dfrac{1}{a+2c}\right)\)

\(\ge\dfrac{4a}{2\left(a+b+c\right)}+\dfrac{4b}{2\left(a+b+c\right)}+\dfrac{4c}{2\left(a+b+c\right)}=2\)

\(\Rightarrow VT\ge2.2=4\)

\(\RightarrowĐPCM\)