tìm các số nguyên tố p, q thỏa mãn: p^2 - 2xq^2 = 1
giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107.101107`
`4x = 5y => x/5 = y/4`
Đặt `x/5 = y/4 = k`
`=> x = 5k; y = 4k`
Ta có: `x^2 - y^2 = 1`
`=> (5k)^2 - (4k)^2 = 1`
`=> 25k^2 - 16k^2 = 1`
`=> 9k^2 = 1`
`=> k^2 = 1 \div 9`
`=> k^2 = 1/9`
`=> k^2 = (+-1/3)^2`
`=> k = +-1/3`
Với `k = 1/3`
`=> x = 1/3*5 = 5/3; y = 1/3*4 = 4/3`
Với `k = -1/3`
`=> x = -1/3*5 = -5/3; y = -1/3*4 = -4/3.`
-Nếu p là số nguyên tố chẵn => 22+p2=2*2+22=8 ( loại)
-Nếu p là số không chia hết cho 3 => 2p+p2 có dạng là 3k (k thuộc N) mà 2p+p2 > 3 => 2p+p2 không là số nguyên tố
-Nếu p = 3 =>2p+p2 = 17 ( thỏa mãn )
Vậy p = 3
bài 5:
Chứng minh :p+q chia hết cho 4 .Từ đề bài suy ra p,q phải là 2 số lẻ liên tiếp nên p.q sẽ có dạng 4k+1 và 4k+3 suy ra p+q chia hết cho 4
Vi p,q là só nguyên tố >3 nêp,q chỉ có thể chia 3 dưa 1 hoặc 2 p=4k+1 suy ra q=3k+3 chia hết cho 3 loại p=3k+2 suy ra q=3k+1 nên p+q chia hết cho 3
suy ra p+q chia hêt cho 12
xét 2p=0
5^2p+1997=1998
2>0=>2p+2>0
5^2p+2+q^2=...5+q^2=1998
q^2 có tận cùng=3 vô lí
tương ứng vs2n>0
ko có q, p nào thỏa mãn
k mk nhé chưa chắc mk lm đúng đôu
Vì q có là số nguyên tố nên q có dạng 3k + 1 hoặc 3k + 2 ( k \(\in\) N )
Nếu q = 3k + 1 thì q = 3k + 3 nên p \(\vdots\) 3 . Loại vì p là số nguyên tố > 3
Khi q = 3k + 2 thì p = 3k + 4
Vì q là số nguyên tố > 3 nên k lẻ
Ta có:
p + q = 6(k + 1),chia hết cho 12 vì k + 1 chẵn
Vậy số dư khi p + q cho 12 là 0