cho b= 4^16-4^15+4^14-4^13+2005 hãy xét xem b chia 17 dư mấy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4^{13}+4^{14}+4^{15}+4^{16}=4^{13}\left(1+4\right)+4^{14}\left(1+4\right)=4^{13}.5+4^{14}.5=5\left(4^{13}+4^{14}\right)⋮5\Rightarrow dpcm\)
c) \(2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}\)
\(=2^{10}\left(1+2+2^2\right)+2^{13}\left(1+2+2^2\right)\)
\(=2^{10}.7+2^{13}.7=7\left(2^{10}+2^{13}\right)⋮7\Rightarrow dpcm\)
Câu c bạn xem lại đê
a) Khẳng định sai b) Khẳng định đúng
c) Khẳng định đúng d) Khẳng định sai
\(A=3+3^2+3^3+...+3^{2009}+3^{2010}=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\)
\(A=3.13+3^4.13+...+3^{2008}.13\)
\(A=13\left(3+3^4+...+3^{2008}\right)\)chia hết cho 13
\(B=\left(4+4^3\right)+\left(4^2+4^4\right)+\left(4^5+4^7\right)+\left(4^6+4^8\right)+...+\left(4^{15}+4^{17}\right)\)
\(B=4.17+4^2.17+4^5.17+...+4^{15}.17\)chia hết cho 17=>số dư = 0
a) Dấu hiệu là điểm bài thi học kì của 100 học sinh lớp 7 của một trường Trung học Cơ Sở Hòa Bình. Số các dấu hiệu là 100
b) Bảng tần số
Giá trị (x) | 1 | 2 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | |
Tần số (n) | 2 | 1 | 2 | 4 | 6 | 8 | 9 | 10 | 13 | 11 | 8 | 8 | 4 | 6 | 3 | 2 | 3 | 1 | N=100 |
Nhận xét: Giá trị lớn nhất là 19, giá trị nhỏ nhất là 1; tần số lớn nhất là 13, tần số nhỏ nhất là 1.
B=(4+4^2+4^3)+....+(4^15+4^16+4^17)
=4.(4^0+4^1+4^2)+....+4^15.(4^0+4^1+4^2)
=4.(1+4+16)+....+4^15.(1+4+16)
=4.21+...+4^15.21
21.(4+...+4^15) chia hết cho 17
Do B : 17
=> B : 17 dư 0.
sao 21.(4+...+4^15) lại chia hết cho 17
bạn giải thik kĩ đc ko