Tìm cặp số (x,y) thỏa mãn 5x - 2. \(\sqrt{x\left(2+y\right)}\) + y^2 +1 =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: x ≥ 0
pt <=> 4x - 4√x +1 + x - 2√x .y + y^2 = 0
<=> (2√x -1)² + (√x -y)² = 0
(a² + b² = 0 <=> a và b bằng 0)
<=> hệ 2√x -1 = 0, √x -y = 0
<=> x = 1/4, y =1/2 (thỏa mãn)
KL: x=1/4, y = 1/2
(đây là giải Trên R, còn trên C thì giải khác)
o trong cau hoi tuong tu co day anh .em nghi vay thoi chu em chang biet
\(5x-2\sqrt{x}\left(2+y\right)+y^2+1=0\) (1) (ĐK:\(x\ge0\)0)
Đặt \(\sqrt{x}=z\) ta có phương trình :
\(5z^2-2\left(2+y\right)z+y^2+1=0\) (2)
Xem (2) là phương trình bậc hai ẩn z thì phương trình có nghiệm khi \(\Delta'=0\Rightarrow y=\frac{1}{2}\)
Thế vào (1) ta tìm được \(x=\frac{1}{2}\)
vậy \(x=\frac{1}{2};y=\frac{1}{2}\)
Điều kiện: \(x\ge0\)
Ta có: \(5x-2\sqrt{x}\left(y+2\right)+y^2+1=0\)
\(\Leftrightarrow4x+x-2y\sqrt{x}-4\sqrt{x}+y^2+1=0\)
\(\Leftrightarrow4x-4\sqrt{x}+1+x-2y\sqrt{x}+y^2=0\)
\(\Leftrightarrow\left(2\sqrt{x}-1\right)^2+\left(\sqrt{x}-y\right)^2=0\)
\(\Leftrightarrow2\sqrt{x}-1=0\) và \(\sqrt{x}-y=0\)
\(\Leftrightarrow\sqrt{x}=\frac{1}{2}\) và \(y=\sqrt{x}\)
\(\Leftrightarrow x=\frac{1}{4}\) và \(y=\frac{1}{2}\)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
7. \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)
\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)
\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)
Vậy \(S_{min}=1936\) \(\Leftrightarrow\) \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)
8. \(x^2-5x+14-4\sqrt{x+1}=0\) (ĐK: x > = -1).
\(\Leftrightarrow\) \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)
Với mọi x thực ta luôn có: \(\left(\sqrt{x+1}-2\right)^2\ge0\) và \(\left(x-3\right)^2\ge0\)
Suy ra \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\) x = 3 (Nhận)