(x^2-1)(x^-1)<0 và x,y thuộc Z
nhanh nha chiều mình nộp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
Ta có: \(x^2+17x+19⋮x+11\)
\(\Leftrightarrow x^2+11x+6x+66-47⋮x+11\)
mà \(x^2+11x+6x+66⋮x+11\)
nên \(-47⋮x+11\)
\(\Leftrightarrow x+11\inƯ\left(-47\right)\)
\(\Leftrightarrow x+11\in\left\{1;-1;47;-47\right\}\)
hay \(x\in\left\{-10;-12;36;-58\right\}\)(thỏa ĐK)
Vậy: \(x\in\left\{-10;-12;36;-58\right\}\)
a/ \(x^2-2x-1< 0\)
\(\Leftrightarrow\left(x-1\right)^2< 2\)
\(\Leftrightarrow-\sqrt{2}< x-1< \sqrt{2}\)
\(\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)
b/ \(2x^2-6x+5=\left(2x^2-\frac{2.\sqrt{2}.x.3}{\sqrt{2}}+\frac{9}{2}\right)+\frac{1}{2}=\left(\sqrt{2}x-\frac{3}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)
Câu 2 tự làm nhé.
\(x^2-2x-1< 0\)
\(\left(x-2\right)x-1< 0\)
\(\left(x-2\right)x\le1\)
\(\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)
Ta có: \(3\left|x^2-1\right|-6=\left|1-x^2\right|\)
\(\Leftrightarrow3\left|x^2-1\right|-\left|x^2-1\right|=6\)
\(\Leftrightarrow2\left|x^2-1\right|=6\)
\(\Leftrightarrow\left|x^2-1\right|=3\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-1=3\\x^2-1=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2=4\\x^2=-2\end{cases}}\)
Vì \(x\ge0>-2\left(\forall x\right)\)
\(\Rightarrow x^2=4\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
\(\Leftrightarrow-\frac{1}{6}< -\frac{1}{3}x+2< \frac{1}{6}\)
\(\Leftrightarrow\hept{\begin{cases}-\frac{1}{3}x+2>-\frac{1}{6}\\-\frac{1}{3}x+2< \frac{1}{6}\end{cases}\Leftrightarrow}\hept{\begin{cases}x< \frac{13}{2}\\x>\frac{11}{2}\end{cases}\Leftrightarrow\frac{11}{2}< x< \frac{13}{2}}\)
vậy
Xét 2 Th nha :
Th1 : \(\left|-\frac{1}{3}x+2\right|< 0\)
PT trở thành : \(\frac{1}{3}x-2< \frac{1}{6}\)
\(\Rightarrow\frac{1}{3}x< \frac{13}{6}\)
\(\Rightarrow x< \frac{13}{2}\)
Th2 : \(\left|-\frac{1}{3}x+2\right|\ge0\)
\(\Rightarrow\frac{-1}{3}x+2< \frac{1}{6}\)
\(\Rightarrow\frac{-1}{3}x< \frac{-11}{6}\)
\(\Rightarrow x>\frac{11}{2}\)
Tự kết luận nha . Nhớ xét điều kiện nha