K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2016

nick thằng trong truy kích đấy là TrumStream thôi ko phải Trùm

14 tháng 10 2016

Câm trả lời câu hỏi kìa

18 tháng 6 2019

Ta có: (C1): x2+ y2 – 4 = 0 có tâm O (0; 0) và bán kính R= 2;

Dường tròn (C2): (x-3)2+ (y-4) 2= 25 có tâm I( 3;4) và R= 5 nên OI= 5

Ta thấy: 5-2 < OI< 5+ 2

nên chúng cắt nhau.

Chọn B.

4 tháng 9 2021

a) \(4x^2+y^2-25+4xy\\ =\left(4x^2+4xy+y^2\right)-25\\ =\left(2x+y\right)^2-5^2\\ =\left(2x+y-5\right)\left(2x+y+5\right)\)

b) \(\left(x-3\right)^2-\left(x+2\right)^2\\ =\left(x-3-x-2\right)\left(x-3+x+2\right)\\ =-5\left(2x-1\right)\)

4 tháng 9 2021

a. 4x2 + y2 - 25 + 4xy

= (2x)2 + 4xy - 52 - 52

= (2x + 5)2 - 52

= (2x + 5 - 5)(2x + 5 + 5)

= 2x(2x + 10)

28 tháng 10 2023

a: \(5^{\left(x-2\right)\left(x+3\right)}=1\)

=>\(\left(x-2\right)\left(x+3\right)=0\)

=>\(\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

c: \(\left|x^2+2x\right|+\left|y^2-9\right|=0\)

mà \(\left\{{}\begin{matrix}\left|x^2+2x\right|>=0\forall x\\\left|y^2-9\right|>=0\forall y\end{matrix}\right.\)

nên \(\left\{{}\begin{matrix}x^2+2x=0\\y^2-9=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(x+2\right)=0\\\left(y-3\right)\left(y+3\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\in\left\{0;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)

d: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=120\)

=>\(2^x\left(1+2+2^2+2^3\right)=120\)

=>\(2^x\cdot15=120\)

=>\(2^x=8\)

=>x=3

e: \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

=>\(\left(x-7\right)^{x+11}-\left(x-7\right)^{x+1}=0\)

=>\(\left(x-7\right)^{x+1}\left[\left(x-7\right)^{10}-1\right]=0\)

=>\(\left[{}\begin{matrix}x-7=0\\x-7=1\\x-7=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\\x=6\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

Đề bài yêu cầu gì vậy em.

d: \(x\left(x^2-1\right)+3\left(x^2-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\)

e: \(x^2-10x+25=\left(x-5\right)^2\)

g: \(x^2-64=\left(x-8\right)\left(x+8\right)\)

h: \(\left(x+y\right)^2-\left(x^2-y^2\right)\)

\(=\left(x+y\right)\left(x+y-x+y\right)\)

\(=2y\left(x+y\right)\)

i: \(5x^2+5xy-x-y\)

\(=5x\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(5x-1\right)\)

k: \(x^2+2xy+y^2-25=\left(x+y-5\right)\left(x+y+5\right)\)

l: \(2xy-x^2-y^2+16\)

\(=-\left(x^2-2xy+y^2-16\right)\)

\(=-\left(x-y-4\right)\left(x-y+4\right)\)

a: \(5x-15y=5\left(x-3y\right)\)

b: \(5x^2y^2+15x^2y+30xy^2=5xy\left(xy+3x+6y\right)\)

c: \(x^3-2x^2y+xy^2-9x\)

\(=x\left(x^2-9-2xy+y^2\right)\)

\(=x\left(x-y-3\right)\left(x-y+3\right)\)

AH
Akai Haruma
Giáo viên
12 tháng 2 2023

Đoạn từ sau chữ "Biết" thiếu dấu liên kết giữa $x_1,y_1,x_2,y_2$. Bạn cần viết lại đề rõ hơn.

trắc nghiệmcâu 1. Phương trình: 6x-15=-4+25 có nghiệm là:A. x=2                   B.x=4                 C. x=-2                 D.x=3Câu 2.Trong các phương trình sau,pt nào là pt bậc nhất 1 ẩn?A=x2+xy+y2=0      B. 8x3-6x+4=0     C. -\(\sqrt{9x}\)+2=0       D. (2x-2)(4x+1)=0Câu 3. Tập nghiệm của pt \(\left(3x-\dfrac{2}{3}\right)\left(\dfrac{-1}{2}-x\right)=0\) A. S=A.S={\(\dfrac{-2}{5};\dfrac{1}{2}\)}       ...
Đọc tiếp

trắc nghiệm

câu 1. Phương trình: 6x-15=-4+25 có nghiệm là:

A. x=2                   B.x=4                 C. x=-2                 D.x=3

Câu 2.Trong các phương trình sau,pt nào là pt bậc nhất 1 ẩn?

A=x2+xy+y2=0      B. 8x3-6x+4=0     C. -\(\sqrt{9x}\)+2=0       D. (2x-2)(4x+1)=0

Câu 3. Tập nghiệm của pt \(\left(3x-\dfrac{2}{3}\right)\left(\dfrac{-1}{2}-x\right)=0\) 

A. S=A.S={\(\dfrac{-2}{5};\dfrac{1}{2}\)}        B. S={\(\dfrac{2}{9};\dfrac{-1}{2}\)}   C. S={\(\dfrac{-2}{9};\dfrac{1}{2}\)}     D. S={\(\dfrac{-2}{9};\dfrac{-1}{2}\)}

Câu 4.ĐKXĐ của pt \(\dfrac{3x+2}{x+3}+\dfrac{4+x}{1-x}=\dfrac{3x-1}{x^2-9}\);

A. x≠+-3                        B. x≠3;x≠1         C. x≠-3;x≠1          D.x≠+-3;x≠1

Câu 5. Cho Δ ABC ∞ ΔDEF. Khẳng định nào sau đây đúg 

A. \(\widehat{A}\)=\(\widehat{f}\)                        B.\(\widehat{A}\) =\(\widehat{E}\)              C.AB=DE              D.AB.DF=AC.DE

Câu 6. Cho Δ ABC  ∞ ΔA'B'C' theo tỉ số đồng dạng là \(\dfrac{2}{3}\) và chu vi ΔA'B'C' là 120cm khi đó chu vi ΔABC là:

A.40cm                        B.60cm                C.72cm                D.80cm

Câu 7.Cho Δ ABC  có M ϵ AB và BM = \(\dfrac{1}{4}AB\), vẽ MN//AC,(N ϵ BC). Biết MN =2cm, Thì AC=:

A.6cm                           B.4cm                 C. 8cm                   D.10cm

Câu 8.Cho AD là phân giác ΔABC (D ϵ BC).Có AB=15cm ;AC=24cm.Độ dài cạnh BC là:

A.13cm                         B.18cm              C.20cm                   D.22cm

1

Câu 8 A

Câu 7 C

Câu 6D

5D

4D

2C

1A

23 tháng 2 2023

e camon nhiều

 

22 tháng 4 2021

Bài 1: Ta có 200920 = (20092)10 = (2009.2009)10

                    2009200910 = (10001.2009)10

Mà 2009 < 10001 ➩ (2009.2009)10 < (10001.2009)10

Vậy 200920 < 2009200910

Bài toán 2. Tính tỉ số , biết:Bài toán 3. Tìm x; y biết:a. . 25 – y2 = 8( x – 2009)b. x3 y = x y3  + 1997c. x + y + 9 = xy – 7.Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.Bài toán 5. Chứng minh rằng:Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x +...
Đọc tiếp

Bài toán 2. Tính tỉ số \frac{A}{B}, biết:

Bài tập nâng cao Toán 7

Bài toán 3. Tìm x; y biết:

a. . 25 – y2 = 8( x – 2009)

b. xy = x y3  + 1997

c. x + y + 9 = xy – 7.

Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.

Bài toán 5. Chứng minh rằng:

Bài tập nâng cao Toán 7

Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x)2005

Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.

Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.

Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.

Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).

Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.

Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.

làm ơn giúp mình 

1

10:

Vì n là số lẻ nên n=2k-1

Số số hạng là (2k-1-1):2+1=k(số)

Tổng là (2k-1+1)*k/2=2k*k/2=k^2 là số chính phương

11: 

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc {1;5;13;65}

=>\(n\in\left\{0;2;-2;2\sqrt{3};-2\sqrt{3};8;-8\right\}\)