tìm số tự nhiên để n3-n+2 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Giả sử \(n^2+11=a^2\) (\(a\in N\)*, a > n)
<=> (a-n)(a+n) = 11
Mà a-n < a + n
<=> \(\left\{{}\begin{matrix}a-n=1\\a+n=11\end{matrix}\right.< =>\left\{{}\begin{matrix}a=6\\n=5\end{matrix}\right.\)
KL Vậy n = 5
Ta có : \(n^2+11=m^2\)
\(\Leftrightarrow n^2-m^2=\left(n-m\right)\left(n+m\right)=-11\)
Mà n và m là các số tự nhiên .
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}n-m=11\\n+m=-1\end{matrix}\right.\\\left\{{}\begin{matrix}n-m=-11\\n+m=1\end{matrix}\right.\\\left\{{}\begin{matrix}n-m=1\\n+m=-11\end{matrix}\right.\\\left\{{}\begin{matrix}n-m=-1\\n+m=11\end{matrix}\right.\end{matrix}\right.\)
- Giair lần lượt các TH ta được TH thỏa mãn là :
\(\left\{{}\begin{matrix}n-m=-1\\n+m=11\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}n=5\\m=6\end{matrix}\right.\)
Vậy n = 5 ...
Đang bận nên hướng dẫn
a )Đặt \(n^2-n+2=a^2\) (a thuôc Z)
\(\Leftrightarrow4n^2-4n+8=4a^2\)
\(\Leftrightarrow\left(4n^2-4n+1\right)-4a^2+7=0\)
\(\Leftrightarrow\left(2n-1\right)^2-\left(2a\right)^2=-7\)
\(\Leftrightarrow\left(2n-2a-1\right)\left(2n+2n-1\right)=-7\)
Đến đây phân tích ước của 7 ra ; tự lm đc
b) Ta có : \(n^5-n=n\left(n^4-1\right)=n\left(n^2+1\right)\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Ta thấy tổng trên chia hết cho 2 và 5 nên \(n^5-n\) chia hết cho 10
=> \(n^5-n+2\) có chữ số tận cùng là 2 ko phải số CP
\(\text{Ta có:} \ 3n \ \vdots \ 3 \Rightarrow 3n+2 \ \text{chia 3 dư 2} \\ \text{Mà một số chính phương khi chia 3 chỉ dư 0 hoặc 1} \\ \Rightarrow \text{Không tồn tại số tự nhiên} \ n \ \text{thỏa mãn}\)
Có: n3-n+2=(n3-n)+2=n(n2-1)+2=n(n-1)(n+1)+2
Dễ thấy (n-1)n(n+1) là tích 3 STN liên tiếp nên chia hết cho 3
=>(n-1)n(n+1)+2 chia 3 dư 2
=>n3-n+2 chia 3 dư 2 nên không là SCP