Giúp với:
Cho a^2+b^2+c^2 = a^3+b^3+c^3 = 1 Tính giá trị biểu thức: C = a^2+b^9+c^1945
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không mất tính tổng quát ta giả sử \(a\ge b\ge c\)
Vì \(a^2+b^2+c^2=1\Rightarrow lal,lbl,lcl\le1\)
\(\Rightarrow\hept{\begin{cases}a^2\ge a^3\\b^2\ge b^3\\c^2\ge c^3\end{cases}}\Rightarrow a^2+b^2+c^2\ge a^3+b^3+c^3=1\)
Dấu = xảy ra khi \(\hept{\begin{cases}a^2=a^3\\b^2=b^3\\c^2=c^3\end{cases}}\)
Mà theo giả thuyết thì \(\hept{\begin{cases}a\ge b\ge c\\a^2+b^2+c^2=1\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=c=0\end{cases}}}\)
Vậy C = 1
Tương tự với các trường hợp giả sử về a,b,c khác ta luôn có giá trị C = 1
Giả sử\(a\ge b\ge c\)(ko mất tính tổng quát) .Ta có :\(\hept{\begin{cases}a^2+b^2+c^2=1\\a^2;b^2;c^2\ge0\end{cases}\Rightarrow a^2;b^2;c^2\le1\Rightarrow|a|;|b|;|c|\le1\Rightarrow\hept{\begin{cases}a^2\ge a^3\\b^2\ge b^3\\c^2\ge c^3\end{cases}\Rightarrow}a^2+b^2+c^2\ge a^3+b^3+c^3=1}\)
\(\Rightarrow\hept{\begin{cases}a^2=a^3\\b^2=b^3\\c^2=c^3\end{cases}\Rightarrow\hept{\begin{cases}a,b,c\in\left\{0;1\right\}\\a^2+b^2+c^2=1\\a\ge b\ge c\end{cases}}\Rightarrow a=1;b=c=0\Rightarrow a^2+b^9+c^{1945}=1}\)
Từ giả thiết đề bài ta có: \(a^2+b^2+c^2=a^3+b^3+c^3\)
\(\Leftrightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0.\)
Có: \(a^2+b^2+c^2=1\Rightarrow\hept{\begin{cases}\left|a\right|\le1\\\left|b\right|\le1\\\left|c\right|\le1\end{cases}}\Rightarrow\hept{\begin{cases}1-a\ge0\\1-b\ge0\\1-c\ge0\end{cases}}\)
Từ đó ta có: \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0.\)
Dấu bằng xảy ra khi: \(a^2\left(1-a\right)=b^2\left(1-b\right)=c^2\left(1-c\right)=0.\)
Kết hợp với điều kiện : \(a^2+b^2+c^2=1\)và \(a^3+b^3+c^3=1\)ta tìm được bộ ba số: a = 1; b = 0; c = 0 hoặc a= 0; b = 1; c = 0 hoặc a = 0; b = 0; c = 1.
Từ đó tìm ra S = 1 .
THEO MÌNH a = 1 b = 0 c = 0 hoặc là a = 0 b = 1 c = 0
\(\Rightarrow\)S = 1 mình đã rất mỏi tay nên ko diễn giải dc
FC : ĐÃ RẤT CỐ GẮNG
a\(^2\)+ b\(^2\) + c\(^2\) = 1⇒ \(\left|a\right|\); \(\left|b\right|\) ; \(\left|c\right|\) ≤ 1
⇒ \(\left|a^3\right|\) ≤ a\(^2\) ; \(\left|b^3\right|\) ≤ b\(^2\) ; \(\left|c^3\right|\) ≤ c\(^2\)
⇒a\(^3\)+ b\(^3\)+ c\(^3\) ≤ \(\left|a^3\right|\) + \(\left|b^3\right|\) + \(\left|c^3\right|\) ≤ a\(^2\) + b\(^2\) + c\(^2\) = 1
Dấu "=" xảy ra khi( a;b;c) = (1;0;0) ; (0;1;0) ; (0;0;1)
Vậy S = 0 + 0 + 1 = 1
Ta có:
\(a^2+b^2+c^2=a^3+b^3+c^3\)
\(\Leftrightarrow a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)
Mà
\(a^2+b^2+c^2=1\Rightarrow\left|a\right|\le1;\left|b\right|\le1;\left|c\right|\le1\Rightarrow1-a\ge0;1-b\ge0;1-c\ge0\)
\(\Rightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\)
Dấu "=" xảy ra khi và chỉ khi:\(a^2\left(1-a\right)=b^2\left(1-b\right)=c^2\left(1-c\right)=0\)
Khi đó ta tìm được \(\left(a;b;c\right)=\left(1;0;0\right)\) và các hoán vị.
Thay vào ta tìm được \(C=1\)
P/S:Mik nghĩ đề là \(a^2+b^9+c^{1945}\) thì sẽ hợp lý hơn:3