cho dãy số
\(x_1=\frac{1}{2};x_{n+1}=\frac{x_n^3+1}{3}\)
tính x30; x100
ghi rõ cách tính
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ công thức truy hồi ta có:
\(x_{n+1}>x_n,\forall n=1,2...\)
\(\Rightarrow\)dãy số \(\left(x_n\right)\) là dãy số tăng
giả sử dãy số \(\left(x_n\right)\) là dãy bị chặn trên \(\Rightarrow limx_n=x\)
Với x là nghiệm của pt ta có: \(x=x^2+x\Leftrightarrow x=0< x_1\) (vô lý)
=> dãy số \(\left(x_n\right)\) không bị chặn hay \(limx_n=+\infty\)
Mặt khác: \(\frac{1}{x_{n+1}}=\frac{1}{x_n\left(x_n+1\right)}=\frac{1}{x_n}-\frac{1}{x_n+1}\)
\(\Rightarrow\frac{1}{x_n+1}=\frac{1}{x_n}-\frac{1}{x_n+1}\)
\(\Rightarrow S_n=\frac{1}{x_1}-\frac{1}{x_{n+1}}=2-\frac{1}{x_{n+1}}\)
\(\Rightarrow limS_n=2-lim\frac{1}{x_{n+1}}=2\)
ghi vào máy tính nhé :\(\dfrac{1}{2}\)=
\(\dfrac{Ans^3+1}{3}\)= = = =
ấn dấu bằng liên tục .nếu muốn tính x30 thì ấn 29 dấu bằng
\(x_1=a>2;x_{n+1}=x_n^2-2,\forall n=1,2,...\)
mà \(n\rightarrow+\infty\)
\(\Rightarrow a\rightarrow+\infty\Rightarrow x_n\rightarrow+\infty\)
\(\Rightarrow\lim\limits_{n\rightarrow+\infty}\dfrac{1}{x_n}=0\) \(\Rightarrow\lim\limits_{n\rightarrow+\infty}\left(\dfrac{1}{x_nx_{n+1}}\right)=0\)
\(\)\(\Rightarrow\lim\limits_{n\rightarrow+\infty}\left(\dfrac{1}{x_1}+\dfrac{1}{x_1x_2}+\dfrac{1}{x_1x_2x_3}+...+\dfrac{1}{x_1x_2...x_n}\right)=0\)
Nhìn nó tưởng khủng hóa ra đơn giản lắm :D
Sẵn mẫu = 2 ở Vế trái, ta cộng luôn các Tử: Các hạng tử x1; x2; ...; xn xuất hiện 2 lần nên tổng VT = x1 + x2 + ... + xn
Sẵn mẫu = 3 ở Vế ơhair, ta cộng luôn các Tử: Các hạng tử x1; x2; ...; xn xuất hiện 3 lần nên tổng VP = x1 + x2 + ... + xn
=> VT = VP. đpcm
Lão Linh mới xét đến điều kiện dấu "=" xảy ra
Thế còn điều kiện "<" vứt đâu?
\(x_{n+1}=\dfrac{1}{2}x_n+2^{n-2}\Leftrightarrow x_{n+1}-\dfrac{1}{6}.2^{n+1}=\dfrac{1}{2}\left(x_n-\dfrac{1}{6}.2^n\right)\)
Đặt \(x_n-\dfrac{1}{6}.2^n=y_n\Rightarrow\left\{{}\begin{matrix}y_1=x_1-\dfrac{1}{6}.2^1=\dfrac{8}{3}\\y_{n+1}=\dfrac{1}{2}y_n\end{matrix}\right.\)
\(\Rightarrow y_n\) là CSN với công bội \(q=\dfrac{1}{2}\)
\(\Rightarrow y_n=\dfrac{8}{3}.\left(\dfrac{1}{2}\right)^{n-1}=\dfrac{4}{3.2^n}\)
\(\Rightarrow x_n=y_n+\dfrac{1}{6}.2^n=\dfrac{4}{3.2^n}+\dfrac{2^n}{6}\)
Câu hỏi của Nguyễn Thiều Công Thành - Toán lớp 9 - Học toán với OnlineMath