tìm giá trị lớn nhất của 9n-13/7n-14 với n nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(\frac{9n-51}{8n-53}=\frac{\frac{9}{8}(8n-53)+\frac{69}{8}}{8n-53}\\
=\frac{9}{8}+\frac{69}{8(8n-53)}\)
Để phân số trên max thì $\frac{69}{8(8n-53)}$ max.
Điều này xảy ra khi $8n-53$ là số dương nhỏ nhất
$\Rightarrow n$ phải là số nguyên dương nhỏ nhất để $8n-53$ là số dương nhỏ nhất.
$8n-53>0\Rightarrow n> 6,625$
$\Rightarrow$ số nguyên dương $n$ nhỏ nhất thỏa mãn là $7$.
Với giá trị nguyên nào của x thì biểu thức A = 14-x/4-x có giá trị lớn nhất ? Tìm giá trị đó
A = 14 - x / 4 - x
để A có giá trị lớn nhất thì A > 0 = > x < 4 = 4 -x bé nhất
= > x = { 1 ; 2 ; 3 }
để 4 trừ x bé nhất thì x = 3
giá trị đó là : 14 - 3 / 4 - 3 = 11 / 1 = 11
ta có :
A = 14 - x / 4 - x
để A có giá trị lớn nhất thì A > 0 = > x < 4 = 4 -x bé nhất
= > x = { 1 ; 2 ; 3 }
để 4 trừ x bé nhất thì x = 3
giá trị đó là : 14 - 3 / 4 - 3 = 11 / 1 = 11
a) Để A là phân số thì : \(n-2\ne0=>n\ne2\)
b) Để A nhận giá trị nguyên âm lớn nhất
\(=>A=-1\\ =>\dfrac{n-6}{n-2}=-1\\ =>n-6=-\left(n-2\right)\\ =>n-6=-n+2\\ =>n+n=6+2\\ =>2n=8\\ =>n=4\left(TMDK\right)\)
c) \(A=\dfrac{n-6}{n-2}=\dfrac{n-2-4}{n-2}=1-\dfrac{4}{n-2}\)
Để A nhận gt số nguyên thì : \(\dfrac{4}{n-2}\in Z=>4⋮\left(n-2\right)\\ =>n-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\ =>n\in\left\{3;1;4;0;6;-2\right\}\)
Đến đây bạn lập bảng giá trị rồi thay từng gt n vào bt A, giá trị nào cho A là STN thì bạn nhận gt đó ạ.
d) Mình nghĩ bạn thiếu đề ạ
Bài 1:Tính cả ước âm thì là số `12`
Bài 2:
Gọi `ƯCLN(7n+10,5n+7)=d(d>0)(d in N)`
`=>7n+10 vdots d,5n+7 vdots d`
`=>35n+50 vdots d,35n+49 vdots d`
`=>1 vdots d`
`=>d=1`
`=>` 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau.
Các phần còn lại thì bạn làm tương tự câu a.
\(A=\frac{12-x}{4-x}=1+\frac{8}{4-x}\)
A nhận giá trị nguyên khi 4 - x là ước nguyên của 8. Mà để A lớn nhất thì 4 - x phải là ước nguyên dương bé nhất hay x - 4 = 1
<=> x = 5
Vậy GTNN của A là 1 + 8 = 9