K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2019

x 3 + 4 y = y 3 + 16 x 1 + y 2 = 5 ( 1 + x 2 ) ( 1 )

– Xét x = 0, hệ (I) trở thành  4 y = y 3 y 2 = 4 < = > y = ± 2

– Xét x ≠ 0, đặt  y x = t < = > y = x t . Hệ (I) trở thành

x 3 + 4 x t = x 3 t 3 + 16 x 1 + x 2 t 2 = 5 ( 1 + x 2 ) < = > x 3 ( t 3 − 1 ) = 4 x t − 16 x x 2 ( t 2 − 5 ) = 4 < = > x 3 ( t 3 − 1 ) = 4 x ( t − 4 ) ( 1 ) 4 = x 2 ( t 2 − 5 ) ( 2 )

 

Nhân từng vế của (1) và (2), ta được phương trình hệ quả

4 x 3 ( t 3 − 1 ) = 4 x 3 ( t − 4 ) ( t 2 − 5 ) < = > t 3 − 1 = t 3 − 4 t 2 − 5 t + 20     (Do x ≠ 0) <=>4t 2 + 5 t − 21 = 0 < = > t = − 3 t = 7 4

+ Với t = – 3, thay vào (2) được x2 = 1 x = ±1.

x = 1 thì y = –3, thử lại (1;–3) là một nghiệm của (I)

x = –1 thì y = 3, thử lại (–1;3) là một nghiệm của (I)

+ Với t = 7/4 , thay vào (2) được  x 2 = − 64 31 (loại)

 

Vậy hệ (I) có các nghiệm (0;2), (0;–2), (1;–3), (–1;3).

6 tháng 12 2019

Đáp án C

20 tháng 10 2017

Đáp án A

24 tháng 2 2018

Đáp án là D 

29 tháng 8 2023

 a) Ta thấy \(xy=\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}=\dfrac{3^2-5}{2}=2\)

\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\) \(=3\left(5-2\right)=9\)

 b) Ta thấy \(xy=\dfrac{-\left(x-y\right)^2+\left(x^2+y^2\right)}{2}=\dfrac{15-5^2}{2}=-5\)

\(\Rightarrow x^3-y^3=\left(x-y\right)\left(x^2+y^2+xy\right)\) \(=5\left(15-5\right)=50\)

23 tháng 11 2017

x 2 - y 3 = 1 1 5 x - 8 y = 3 2

Từ (1) ta rút ra được : Giải bài 13 trang 15 SGK Toán 9 Tập 2 | Giải toán lớp 9 (*)

Thế (*) vào phương trình (2) ta được :

Giải bài 13 trang 15 SGK Toán 9 Tập 2 | Giải toán lớp 9

Thay x = 3 vào (*) ta suy ra Giải bài 13 trang 15 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất Giải bài 13 trang 15 SGK Toán 9 Tập 2 | Giải toán lớp 9

18 tháng 8 2019

b) x 3  - 3 x 2  + 2 = 0

⇔  x 3  -  x 2  - 2 x 2  + 2 = 0

⇔  x 2  (x - 1) - 2( x 2  - 1) = 0

⇔ (x - 1)[ x 2 - 2(x + 1)] = 0

⇔ (x - 1)( x 2 - 2x - 2) = 0

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy phương trình đã cho có tập nghiệm là S = {1; (1 ± 3 )/2}