K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

pi/2<a,b<pi

=>cos a<0; cos b<0; sin a>0; sin b>0

\(cosa=-\sqrt{1-\left(\dfrac{3}{5}\right)^2}=-\dfrac{4}{5};sina=\sqrt{1-\left(-\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)

tan a=-3/5:4/5=-3/4; tan b=12/13:(-5/13)=-12/5

\(tan\left(a+b\right)=\dfrac{tana+tanb}{1-tana\cdot tanb}\)

\(=\dfrac{-\dfrac{3}{4}+\dfrac{-12}{5}}{1-\dfrac{-3}{4}\cdot\dfrac{-12}{5}}=\dfrac{63}{16}\)

sin(a-b)=sina*cosb-sinb*cosa

\(=\dfrac{3}{5}\cdot\dfrac{-5}{13}-\dfrac{-4}{5}\cdot\dfrac{12}{13}=\dfrac{-15+48}{65}=\dfrac{33}{65}\)

30 tháng 3 2017

undefined

\(\dfrac{\Omega}{2}< a< \Omega\)

=>\(cosa< 0\)

\(sin\alpha=\dfrac{1}{3}\)

\(\Leftrightarrow cos^2\alpha=1-sin^2\alpha=1-\left(\dfrac{1}{3}\right)^2=\dfrac{8}{9}\)

mà cosa<0

nên \(cos\alpha=-\dfrac{2\sqrt{2}}{3}\)

\(cos\left(\alpha-\dfrac{\Omega}{6}\right)=cos\alpha\cdot cos\left(\dfrac{\Omega}{6}\right)+sin\alpha\cdot sin\left(\dfrac{\Omega}{6}\right)\)

\(=-\dfrac{2\sqrt{2}}{3}\cdot\dfrac{\sqrt{3}}{2}+\dfrac{1}{3}\cdot\dfrac{1}{2}\)

\(=\dfrac{-2\sqrt{6}+1}{6}\)

30 tháng 3 2017

undefined

30 tháng 3 2017

Làm hay thế :))

30 tháng 3 2017

Hỏi đáp Toán

10 tháng 5 2017

a) Do \(\pi< \alpha< \dfrac{3\pi}{2}\) nên \(sin\alpha< 0;cot\alpha>0;tan\alpha>0\).
Vì vậy: \(sin\alpha=-\sqrt{1-cos^2\alpha}=\dfrac{-\sqrt{15}}{4}\).
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\sqrt{15}}{4}:\dfrac{-1}{4}=\sqrt{15}\).
\(cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{1}{\sqrt{15}}\).

10 tháng 5 2017

b) Do \(\dfrac{\pi}{2}< \alpha< \pi\) nên \(cos\alpha< 0;tan\alpha< 0;cot\alpha< 0\).
\(cos\alpha=-\sqrt{1-sin^2\alpha}=-\dfrac{\sqrt{5}}{3}\);
\(tan\alpha=\dfrac{2}{3}:\dfrac{-\sqrt{5}}{3}=\dfrac{-2}{\sqrt{5}}\); \(cot\alpha=1:tan\alpha=\dfrac{-\sqrt{5}}{2}\).

15 tháng 4 2017

a) Do 0 < α < nên sinα > 0, tanα > 0, cotα > 0

sinα =

cotα = ; tanα =

b) π < α < nên sinα < 0, cosα < 0, tanα > 0, cotα > 0

cosα = -√(1 - sin2 α) = -√(1 - 0,49) = -√0,51 ≈ -0,7141

tanα ≈ 0,9802; cotα ≈ 1,0202.

c) < α < π nên sinα > 0, cosα < 0, tanα < 0, cotα < 0

cosα = ≈ -0,4229.

sinα =

cotα = -

d) Vì < α < 2π nên sinα < 0, cosα > 0, tanα < 0, cotα < 0

Ta có: tanα =

sinα =

cosα =

30 tháng 3 2017

​ta có \(sin^2a+cos^2a=1\Rightarrow sina=\pm\sqrt{1-cos^2a}=\pm\sqrt{1-\left(\dfrac{-\sqrt{5}}{3}\right)^2}=\pm\dfrac{2}{3}\)

​vì \(\Pi< a< \dfrac{3\Pi}{2}\Rightarrow sina< 0\) \(\Rightarrow sina=\dfrac{-2}{3}\)

lại có \(tana=\dfrac{sina}{cosa}=\dfrac{\dfrac{-2}{3}}{\dfrac{-\sqrt{5}}{3}}=\dfrac{2}{\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)

30 tháng 3 2017

\(\pi< a< \dfrac{3\pi}{2}\) nên \(\sin a< 0\)\(\tan a>0\)

\(\cos a=-\dfrac{\sqrt{5}}{3}\) nên \(\sin a=-\dfrac{2}{3}\)

Vậy \(\tan a=\dfrac{2}{\sqrt{5}}\)