Chứng minh rằng A=1+3+5+...+(2n-1) là số chính phương.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
15 tháng 10 2015
số các số của A là:
(2n+1-1):2+1=n+1(số)
tổng A là:
(2n+1+1)(n+1):2=(n+1)2 là số chính phương
=>đpcm
NT
0
7 tháng 10 2015
số các số hạng là:
(2n-1-1):2+1=n(số)
tổng A là:(2n-1+1)n:2=n.n=n2 là số chính phương
=>A là số chính phương
=>đpcm
3 tháng 10 2016
Ta có : A = 1 + 3 + 5 + ... + ( 2n - 1 ) = ( 2n - 1 +1 ) . n : 2 = 2n . n : 2 = 2n : 2 .n = n . n = n^2
=> A luôn luôn là số chính phương ( của n )
30 tháng 5 2018
\(S=\left[\left(2n+1-1\right):2+1\right]\times\left(2n+1+1\right):2\)
\(S=\left(n+1\right)\times\left(2n+2\right):2\)
\(S=\left(n+1\right)\times\left(n+1\right)\)
\(S=\left(n+1\right)^2\)( dpcm )
Số số hạng trong dãy số trên là:
\(\frac{\left(2n-1\right)-1}{2}+1=n\) (số hạng)
Tổng của dãy số trên là:
\(\frac{\left[\left(2n-1\right)+1\right].n}{2}=n^2\)
Vậy ta có đpcm.