Tìm số tự nhiên có hai chữ số biết lấy số đó cộng với các chữ số của số đó được 100.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi SPT là : \(\overline{ab}\)
Các chữ số của SPT là : `a,b`
Ta có :
\(\overline{ab}+a+b=100\\ \overline{a0}+b+a+b=100\\ 10\times a+b+a+b=100\\ 11\times a+2\times b=100\)
Do a,b là các số có 1 chữ số
Để thỏa mãn điều trên thì a = 8 hoặc 9
Nếu a = 8 :
\(88+2\times b=100\\ b=6\)
Nếu a = 9 :
\(99+2\times b=100\\ b=1:2\) ( Loại )
Vậy SPT là : `86`
Ta có : 6:15=0 dư 6
66:15=4 dư6
666:15=44 dư 6.....
vậy dư 6
Gọi số đó là ab \(\left(a\ne0\right)\), (a,b là chữ số)
Ta có: ab + a+b =80 <=> 10a+b+a+b=80 <=> 11a+2b=80
Vì \(b\le9\Rightarrow2b\le18\Rightarrow11a\ge62\Rightarrow a\ge6\)
Mà ta có 11a+2b=80, 2b chia hết cho 2, 80 chia hết cho 2 => 11a chia hết cho 2 => a chia hết cho 2
=> a=6 hoặc a=8
Nếu a=6 thì b=7 => số đó là 67.
Nếu a=8 thì b=-4 (loại)
Vậy số đó là 67
Giải toán bằng phương pháp cấu tạo số em nhé.
Số có hai chữ có dạng: \(\overline{ab}\) (10 ≤ \(\overline{ab}\) ≤ 99)
Theo bài ra ta có: a + b + a \(\times\) b = \(\overline{ab}\)
a + b + a \(\times\) b = a \(\times\) 10 + b
a + a \(\times\) b = a \(\times\) 10
a \(\times\)10 - a = a \(\times\) b
9a = a \(\times\) b
b = 9a : a
b = 9; 0< a ≤ 9
Vậy các số tự nhiên có hai chữ số thỏa mãn đề bài lần lượt là:
19; 29; 39; 49; 59; 69; 79; 89; 99
Lời giải:
Gọi số cần tìm là $\overline{abcd}$ với $a,b,c,d\in\mathbb{N}; a,b,c,d\leq 9; a\neq 0$
Theo bài ra ta có:
$\overline{abcd}+a+b+c+d=2000(*)$
Suy ra $\overline{abcd}<2000$
Suy ra $a<2$. Do đó $a=1$
Thay vô $(*)$ ta có: $\overline{1bcd}+1+b+c+d=2000$
$1000+100\times b+10\times c+d+1+b+c+d=2000$
$101\times b+11\times c+2\times d=999$
Nếu $b=8$ thì $11\times c+2\times d=191$. Mà $11\times c+2\times d$ lớn nhất bằng $11\times 9+2\times 9=117$ nên vô lý.
Nếu $b<8$ thì $11\times c+2\times d$ càng lớn hơn $191$, càng vô lý.
Do đó $b=9$
Khi ấy: $11\times c+2\times d=90$
Nếu $c=6$ thì $2\times d=24$. Điều này vô lý do $2\times d$ lớn nhất bằng $18$
Nếu $c<6$ thì $2\times d$ càng lớn hơn $24$, càng vô lý.
Do đó $c=7,8,9$. Thay vào ta tìm được $d=1$ khi $c=8$.
Vậy số cần tìm là $1981$
Gọi số cần tìm có dạng là \(\overline{ab}\)
Lấy số đó trừ hai lần tổng các chữ số của nó thì được kết quả là 51 nên ta có:
\(\overline{ab}-2\left(a+b\right)=51\)
=>\(10a+b-2a-2b=51\)
=>8a-b=51(1)
lấy hai lần chữ số hàng chục cộng với ba lần chữ số hàng đơn vị thì được 29 nên 2a+3b=29(2)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}8a-b=51\\2a+3b=29\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}24a-3b=153\\2a+3b=29\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}26a=182\\8a-b=51\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=7\\b=8a-51=8\cdot7-51=56-51=5\end{matrix}\right.\)
Vậy: Số cần tìm là 75
Gọi số đó là ab, ta có hpt: a2 + b2 = ab + a.b và ab + 36 = ba
=> a = 7; b = 8 => ab = 78
gọi số đó là ab
theo đề bài có hệ phương trình
a^2 + b^2 = ab + a x b
ab + 36 = ba
giải hệ được ab là 48
Bạn đọc kĩ đề lại 1 lần xem sao chứ mình nghĩ là sai đề rồi
nhưng mọi người ơi đề sai rồi