Tìm nghiệm của các đa thức sau :
a)2/3x-15
b)x^2+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(R\left(x\right)=x^2+3x\)
a) Ta có:
\(R\left(x\right)=x^2+3x\)
\(R\left(x\right)=x\left(x+3\right)\)
\(R\left(x\right)=x\left(x+3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+3=0\Rightarrow x=-3\end{matrix}\right.\)
Vậy: Trong các số -1, -2 và -3 thì nghiệm của đa thức là -3
b) Các nghiệm của R(x) là 0 và -3 (ở phần a)
a) Nghiệm của đa thức \(f\left(x\right)=3x-1\)
\(f\left(x\right)=3x-1=0\)
\(\Rightarrow3x=1\)
\(\Rightarrow x=\dfrac{1}{3}\)
Vậy nghiệm của đa thức \(f\left(x\right)\) là \(\dfrac{1}{3}\)
b) Nghiệm của đa thức \(A\left(x\right)=x-\dfrac{1}{2}\)
\(A\left(x\right)=x-\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{2}\)
Vậy nghiệm của đa thức là \(x=\dfrac{1}{2}\)
c) Nghiệm của đa thức \(B\left(x\right)=-2x+1\)
\(B\left(x\right)=-2x+1=0\)
\(\Rightarrow-2x=-1\)
\(\Rightarrow x=\dfrac{-1}{-2}=\dfrac{1}{2}\)
Vậy nghiệm của đa thức \(x=\dfrac{1}{2}\)
a, \(P\left(1\right)=2-3-4=-5\)
b, \(H\left(x\right)=P\left(x\right)-Q\left(x\right)=x^2-9\)
c, Ta có \(H\left(x\right)=\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=3;x=-3\)
a) Đặt \(f\left(x\right)=4x-\frac{1}{2}\)
\(\Leftrightarrow4x-\frac{1}{2}=0\)
\(4x=0+\frac{1}{2}\)
\(4x=\frac{1}{2}\)
\(x=\frac{1}{2}:4\)
\(x=\frac{1}{8}\)
Vậy x = 1/8 là nghiệm của đa thức f(x)
b) Đặt f(x) = (x-1)(x+1)
<=> (x-1)(x+1) = 0
\(\Rightarrow\hept{\begin{cases}x-1=0\\x+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\x=-1\end{cases}}\)
Vậy x = -1 hoặc 1 là nghiệm của đa thức f(x)
c) Đặt f(x) = x2-3x+2 = x2-1x+2x+2 = x2-x+2x+2 = x(x-1)+2(x-1) = (x-2)(x-1)
<=> (x-2)(x-1) = 0
\(\Leftrightarrow\hept{\begin{cases}x-2=0\\x-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\x=1\end{cases}}\)
Vậy x = 1 hoặc 2 là nghiệm của f(x)
a) \(4x-\frac{1}{2}=0\)
\(4x=\frac{1}{2}\)
\(x=\frac{1}{8}\)
vậy \(x=\frac{1}{8}\)
b) \(\left(x-1\right)\left(x+1\right)=0\)
\(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}=>\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)
vậy \(x=1\) hoặc \(x=-1\)
`A(x)=0`
`<=>4x(x-1)-3x+3=0`
`<=>4x(x-1)-3(x-1)=0`
`<=>(x-1)(4x-3)=0`
`<=>` $\left[ \begin{array}{l}x=1\\x=\dfrac341\end{array} \right.$
`B(x)=0`
`<=>2/3x^2+x=0`
`<=>x(2/3x+1)=0`
`<=>` $\left[ \begin{array}{l}x=0\\x=-\dfrac32\end{array} \right.$
`C(x)=0`
`<=>2x^2-9x+4=0`
`<=>2x^2-8x-x+4=0`
`<=>2x(x-4)-(x-4)=0`
`<=>(x-4)(2x-1)=0`
`<=>` $\left[ \begin{array}{l}x=4\\x=\dfrac12\end{array} \right.$
Đặt \(\dfrac{2}{3}x-15=0\)
\(\Leftrightarrow\dfrac{2}{3}x=15\)
\(\Leftrightarrow x=\dfrac{45}{2}\)
Đặt \(x^2+1=0\)
\(\Leftrightarrow x^2=-1\)
\(\Leftrightarrow x=-1\)
\(\text{Đặt }\dfrac{2}{3}x-15=0\)
\(\Rightarrow\dfrac{2}{3}x=0+15=15\)
\(\Rightarrow x=15:\dfrac{2}{3}=\dfrac{45}{2}\)
\(\text{Vậy đa thức }\dfrac{2}{3}x-15\text{ có nghiệm là:}\dfrac{45}{2}\)
\(\text{Đặt }x^2+1=0\)
\(\Rightarrow x^2=0-1=-1\)
\(\Rightarrow x\in\varnothing\)
\(\text{Vậy đa thức }x^2+1\text{ vô nghiệm}\)