cho 2 da thuc:f(x) 3x^2-7x+1 ; g(x) x^2+2x-3. tinh f(x)+g(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(f(x)=x^2+3mx+m^2\Rightarrow f(1)=1+3m+m^2\)
\(g(x)=x^2+(2m-1)x+m^2\Rightarrow g(1)=1+(2m-1)+m^2=m^2+2m\)
Để \(f(1)=g(1)\Leftrightarrow 1+3m+m^2=m^2+2m\)
\(\Leftrightarrow 1+m=0\Leftrightarrow m=-1\)
Vậy \(m=-1\)
\(\left\{{}\begin{matrix}f\left(x\right)=x^2+3mx+m^2\\g\left(x\right)=x^2+\left(2m-1\right)x+m^2\end{matrix}\right.\)
\(h\left(x\right)=f\left(x\right)-g\left(x\right)=\left[3m-\left(2m-1\right)\right]x=\left(m+1\right)x\)
\(f\left(1\right)=g\left(1\right)\Rightarrow f\left(1\right)-g\left(1\right)=0\Rightarrow h\left(1\right)=0\)
\(\Rightarrow\left(m+1\right).1=0\Rightarrow m=-1\)
Đặt phép chia ta tìm được dư cuối cùng là (3+b +a -6b -1) x + 2 - (a -6b -1). b
Để phép chia trên là phép chia hết thì dư cuối cùng là 0
suy ra các hệ số của đa thức dư đều =0, tức là 2 +a -5b = 0 (1) và 2 -(a -6b -1). b = 0 (2)
Từ (1) suy ra a = 5b -2, thay vào (2) và rút gọn ta được b2+3b +2 = 0 suy ra b = -1 hoặc b = -2
Với b = -1 suy ra a = -7; Với b =-2 suy ra a = -12. Bài toán có 2 đáp số
a: \(=2x^4-4x^3+x^3-2x^2-5x^2+10x-4x+8\)
\(=\left(x-2\right)\left(2x^3+x^2-5x-4\right)\)
\(=\left(x-2\right)\left(x+1\right)\left(2x^2-x-4\right)\)
b: \(=\left(x^2-x+1\right)\left(x^2+x+3\right)\)
c: \(=\left(x^2+x+1\right)^2\)
b ( x^2 + 3x + 2)( x^2 + 7x + 12) - 24
= [ x^2 +x + 2x + 2) ( x^2 +3x + 4x + 12) - 24
= [x(x+1) + 2 (x + 1) [x(x+3) + 4(x+3) ] - 24
= ( x + 1)(x+2) (x+3)(x+4) - 24
= ( x + 1).(x+4) (x+2)(x+3) - 24
=(x^2 + 5x + 4)(x^2+5x+6) - 24
Đặt x^2 + 5x +4 =y ta có:
= y(y+2) - 24
= y^2 + 2y - 24
= y^2 + 2y + 1 - 25
= ( y + 1)^2 - (5)^2
= ( y + 1 - 5 )( y + 1 + 5)
= ( y- 4)(y +6)
Thay y trở lại là đc
đúng nha
a)\(f\left(x\right)=x^5-3x^2+7x^4-x^5+2x^2-9x^3+x^2-\frac{1}{4}x+2x-3\)
\(=x^5-x^5+7x^4-9x^3-3x^2+2x^2+x^2-\frac{1}{4}x+2x-3\)
\(=7x^4-9x^3+\frac{7}{4}x-3\)
\(g\left(x\right)=5x^4-x^5+\frac{1}{2}x^2+x^5+x^2-4x^4-2x^3+3x^2+x^3-\frac{1}{4}\)
\(=-x^5+x^5+5x^4-4x^4-2x^3+x^3+\frac{1}{2}x^2+x^2+3x^2-\frac{1}{4}\)
\(=x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}\)
b)\(f\left(1\right)=7.1^4-9.1^3+\frac{7}{4}.1-3=7-9+\frac{7}{4}-3=-\frac{13}{4}\)
\(f\left(-1\right)=7.\left(-1\right)^4-9.\left(-1\right)^3+\frac{7}{4}.\left(-1\right)-3=7+9-\frac{7}{4}-3=\frac{45}{4}\)
\(g\left(1\right)=1^4-1^3+\frac{9}{2}.1^2-\frac{1}{4}=1-1+\frac{9}{2}-\frac{1}{4}=\frac{17}{4}\)
\(g\left(-1\right)=\left(-1\right)^4-\left(-1\right)^3+\frac{9}{2}.\left(-1\right)^2-\frac{1}{4}=1+1+\frac{9}{2}-\frac{1}{4}=\frac{25}{4}\)
c) Ta có: f(x)+g(x)=\(7x^4-9x^3+\frac{7}{4}x-3+x^4-x^3+\frac{9}{2}x^2-\frac{1}{4}=7x^4+x^4-9x^3-x^3+\frac{9}{2}x^2+\frac{7}{4}x-3-\frac{1}{4}\)
\(=8x^4-10x^3+\frac{9}{2}x^2+\frac{7}{4}x-\frac{13}{4}\)
f(x)-g(x) =\(7x^4-9x^3+\frac{7}{4}x-3-x^4+x^3-\frac{9}{2}x^2+\frac{1}{4}=7x^4-x^4-9x^3+x^3-\frac{9}{2}x^2+\frac{7}{4}x-3+\frac{1}{4}\)
\(=6x^4-8x^3-\frac{9}{2}x^2+\frac{7}{4}x-\frac{11}{4}\)
`f(x) + g(x) = 3x^2 - 7x + 1 + x^2 + 2x - 3`
`= ( 3x^2 + x^2 ) - ( 7x - 2x ) + ( 1 - 3 )`
`= 4x^2 - 5x - 2`
f(x)+ g(x)= (3x^2 - 7x + 1)+(x^2+2x-3)
= (3x^2 + x^2)+(-7x+2x)+(1-3)
= 10x^2 + -5x + -2