Tìm giá trị nhỏ nhất:
C=\(\frac{x^2+1}{x^2-x+1}\)
D=\(\frac{3x^2-6x+5}{x^2-4x+4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sau khi rút gọn thì ta được \(A=x\left(2x+3\right)\)
\(\Leftrightarrow A=2x^2+3x\)
\(\Leftrightarrow A=2\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)-2.\frac{9}{4}\)
\(\Leftrightarrow A=2\left(x+\frac{3}{2}\right)^2-\frac{9}{2}\)
Vì \(2\left(x+\frac{3}{2}\right)^2\ge0\) nên \(2\left(x+\frac{3}{2}\right)^2-\frac{9}{2}\ge\frac{-9}{2}\)
Do đó \(A=2\left(x+\frac{3}{2}\right)^2-\frac{9}{2}\ge\frac{-9}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(2\left(x+\frac{3}{2}\right)^2=0\)
\(\Leftrightarrow\)\(\left(x+\frac{3}{2}\right)^2=0\)
\(\Leftrightarrow\)\(x+\frac{3}{2}=0\)
\(\Leftrightarrow\)\(x=\frac{-3}{2}\)
\(VậyMinA=\frac{-9}{2}tạix=\frac{-3}{2}\)
Điều kiện : \(x^2-9\ne0\Rightarrow\orbr{\begin{cases}x-3\ne0\\x+3\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne3\\x\ne-3\end{cases}}\)
Để \(\frac{3x-2}{x^2-9}=0\)
\(\Rightarrow3x-2=0\)
\(\Rightarrow x=\frac{2}{3}\)
\(A=\frac{3.\left(x^2-2x+5\right)+2}{x^2-2x+5}=3+\frac{2}{x^2-2x+1+4}=3+\frac{2}{\left(x-1\right)^2+4}\ge3+\frac{1}{2}=\frac{7}{2}\)
Dấu = xảy ra khi x-1=0
=> x=1
\(A=\frac{3x^2-6x+17}{x^2-2x+5}\)
\(A=\frac{2x^2-4x+10+x^2-2x+7}{x^2-2x+5}\)
\(A=\frac{2\left(x^2-2x+5\right)+x^2-2x+5+2}{x^2-2x+5}\)
\(A=\frac{2\left(x^2-2x+5\right)}{x^2-2x+5}+\frac{x^2-2x+5}{x^2-2x+5}+\frac{2}{x^2-2x+5}\)
\(A=2+1+\frac{2}{x^2-2x+1+4}\)
\(A=3+\frac{2}{\left(x-1\right)^2+4}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A\le3+\frac{2}{4}=\frac{7}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)
Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2
\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)
\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)
\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6
\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)
\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2
\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)
\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^