K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2017

a, ta có:
\(\sqrt{24}=4,89\\ \sqrt{3}=1,73\)

\(\Rightarrow\sqrt{24}+\sqrt{3}=4,89+1,73=6,62\)
vì 7>6,62 nên 7>\(\sqrt{24}+\sqrt{3}\)

28 tháng 10 2017

b, Ta có:
\(\sqrt{50+2}=\sqrt{52}=7,21\\ \sqrt{50}+\sqrt{2}=7,07+1,41=8,48 \)

vì 7,21<8,48 nên \(\sqrt{50+2}< \sqrt{50}+\sqrt{2}\)

18 tháng 10 2015

Ta có:

\(\sqrt{63-27}=\sqrt{36}=6\)

\(\sqrt{63}-\sqrt{27}<\sqrt{64}-\sqrt{4}=6\)

\(\Rightarrow\sqrt{63}-\sqrt{27}<\sqrt{63-27}\)

18 tháng 10 2015

\(\sqrt{63}-\sqrt{27}<\sqrt{63-27}\)

3 tháng 11 2016

Ta có\(8< 16\Rightarrow\sqrt{8}< \sqrt{16}=4\)

và \(5< 9\Rightarrow\sqrt{5}< \sqrt{9}=3\)

\(\Rightarrow\sqrt{8}-\sqrt{5}< \sqrt{16}-\sqrt{9}=4-3=1\)

Vậy \(\sqrt{8}-\sqrt{5}< 1\)

Ta có \(\sqrt{63-27}=\sqrt{36}=6\)

lại có\(63< 64\Rightarrow\sqrt{63}< \sqrt{64}=8\)và \(27>4\Rightarrow\sqrt{27}>\sqrt{4}=2\)

\(\Rightarrow\sqrt{63}-\sqrt{27}< \sqrt{64}-\sqrt{4}=8-2=6\)

\(\sqrt{63-27}=6\Rightarrow\sqrt{63}-\sqrt{27}< \sqrt{63-27}\)

Vậy\(\sqrt{63}-\sqrt{27}< \sqrt{63-27}\)

3 tháng 11 2016

8_5< 1

6327 > 63_27

4 tháng 7 2018

\(1.A=\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)=5-4=1\)

\(2.B=\left(\sqrt{45}+\sqrt{63}\right)\left(\sqrt{7}-\sqrt{5}\right)=\left(3\sqrt{5}+3\sqrt{7}\right)\left(\sqrt{7}-\sqrt{5}\right)=2\left(7-5\right)=4\) \(3.C=\left(\sqrt{5}+\sqrt{3}\right)\left(5-\sqrt{15}\right)=\sqrt{5}\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=\sqrt{5}\left(5-3\right)=2\sqrt{5}\) \(4.\left(\sqrt{32}-\sqrt{50}+\sqrt{27}\right)\left(\sqrt{27}+\sqrt{50}-\sqrt{32}\right)=\left(4\sqrt{2}-5\sqrt{2}+3\sqrt{3}\right)\left(3\sqrt{3}+5\sqrt{2}-4\sqrt{2}\right)=\left(3\sqrt{3}-\sqrt{2}\right)\left(3\sqrt{3}+\sqrt{2}\right)=27-2=25\) \(5.E=\left(\sqrt{3}+1\right)^2-2\sqrt{3}+4=4+2\sqrt{3}-2\sqrt{3}+4=8\)

\(6.F=\left(\sqrt{15}-2\sqrt{3}\right)^2+12\sqrt{5}=27-12\sqrt{5}+12\sqrt{5}=27\)

18 tháng 2 2017

a, Ta có: 1= \(\sqrt{9}-\sqrt{4}\)

Nx: \(\begin{cases} 0<8<9\\ 5>4>0 \end{cases}\)

=>\(\begin{cases} \sqrt{8}<\sqrt{9}\\ \sqrt{5}>\sqrt{4} \end{cases}\)

=>\(\sqrt{8}-\sqrt{5}<\sqrt{9}-\sqrt{4}\)

=>\(\sqrt{8}-\sqrt{5}<1\)

b,Ta có: \(\sqrt{63-27}=\sqrt{36}=6\)

\(\sqrt{63}-\sqrt{27}<\sqrt{64}-\sqrt{25}\\ =>\sqrt{63}-\sqrt{27}<3\\ =>\sqrt{63}-\sqrt{27}<6(vì 3<6)\\ =>\sqrt{63}-\sqrt{27}<\sqrt{63-27} \)