K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2019

Có cách giải nhưng t ko chắc đâu nhá;) đã bảo đưa dạng a, b, c rồi mà cứ đưa dạng này-_-

\(VT< \sqrt{2\sqrt{3\sqrt{4\sqrt{5\sqrt{6....}}}}}=x>0\) (vô hạn dấu căn). Ta sẽ chứng minh x < 3

Ta thấy \(x^2=\sqrt{2}.x\Rightarrow x\left(x-\sqrt{2}\right)=0\Rightarrow x=\sqrt{2}< 3\Rightarrow\text{đpcm }\)

8 tháng 9 2019

\(x^2=2\sqrt{3\sqrt{4\sqrt{5....\sqrt{2000}}}}ma?\)

13 tháng 6 2017

\(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2000}}}}=\sqrt{2\sqrt{3\sqrt{4...\sqrt{1999\sqrt{2000}}}}}\)

\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1999.2001}}}}< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1998.\frac{1999+2001}{2}}}}}\)

\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1998.2000}}}}< ...< \sqrt{2.\frac{3+5}{2}}\)

\(=\sqrt{2.4}=\sqrt{8}< 3\)

1 tháng 1 2017

Chịu không giao luu nổi

1 tháng 1 2017

Cứ rút từ từ là ra

20 tháng 9 2017

Ta có:

\(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2000}}}}\)

\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{2000.2002}}}}\)

\(=\sqrt{2\sqrt{3\sqrt{4...\sqrt{1999\sqrt{2001^2-1}}}}}\)

\(< \sqrt{2\sqrt{3\sqrt{4...\sqrt{1999.2001}}}}\)

\(........................................\)

\(< \sqrt{2.4}=\sqrt{8}< 3\)

22 tháng 9 2017

Ta có:

√2√3√4...√2000

<√2√3√4...√2000.2002

=√2√3√4...√1999√20012−1

<√2√3√4...√1999.2001

........................................

<√2.4=√8<3

9 tháng 7 2019

#)Giải : 

\(2012\sqrt{2013}< 2013^2\Rightarrow\sqrt{2011\sqrt{2012\sqrt{2013}}}< \sqrt{2011.2013}< 2012\)

Thực hiện nhiều lần ta được vế trái \(< \sqrt{2\sqrt{3.5}}< \sqrt{8}< 3\)

\(\Rightarrow\sqrt{2\sqrt{3\sqrt{4...\sqrt{2000}}}}< 3\left(đpcm\right)\)

10 tháng 11 2017

Có : 2 > \(\sqrt{3}\) ; 3 > \(\sqrt{4}\) ; ..... ; 1999 > \(\sqrt{2000}\)

=> VT = \(\sqrt{2\sqrt{3\sqrt{4......\sqrt{1999\sqrt{2000}}}}}\)<   \(\sqrt{2\sqrt{3\sqrt{4......\sqrt{1999.1999}}}}\)

\(\sqrt{2\sqrt{3\sqrt{4.....\sqrt{1999}}}}\) < ........ < \(\sqrt{2\sqrt{3}}\) <  \(\sqrt{2.2}\) = 2

=> ĐPCM

10 tháng 11 2017

Ta có: \(n=\sqrt{n^2}=\sqrt{1+n^2-1}=\sqrt{1+n-1.n+1}\)

Áp dụng công thức trên với \(n=4,5,6\)ta có:

\(4=\sqrt{1+3.5}=\sqrt{1+3\sqrt{1+4\sqrt{1+5.7}}}=\sqrt{1+3\sqrt{1+\sqrt{4\sqrt{1+...n-1\sqrt{n+1^2}}}}}\)

\(>\sqrt{3\sqrt{4\sqrt{...2000}}}\)

Do đó: \(\sqrt{2+\sqrt{3\sqrt{4\sqrt{...2000}}}}< \sqrt{2+2}=2\)