tìm x:
\(x+\frac{3}{4}=2-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d,
\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)
e,
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)
\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)
Vậy không tồn tại $x$ thỏa mãn đề bài.
f,
\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)
\(\Leftrightarrow 6x-3=10+6x\)
\(\Leftrightarrow 13=0\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề bài.
a,
$0-|x+1|=5$
$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)
Do đó không tồn tại $x$ thỏa mãn điều kiện đề.
b,
\(2-|\frac{3}{4}-x|=\frac{7}{12}\)
\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)
c,
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)
\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)
a)
\(\begin{array}{l}\frac{2}{9}:x + \frac{5}{6} = 0,5\\\frac{2}{9}:x = \frac{1}{2} - \frac{5}{6}\\\frac{2}{9}:x = \frac{3}{6} - \frac{5}{6}\\\frac{2}{9}:x = \frac{{ - 2}}{6}\\x = \frac{2}{9}:\frac{{ - 2}}{6}\\x = \frac{2}{9}.\frac{{ - 6}}{2}\\x = \frac{{ - 2}}{3}\end{array}\)
Vậy \(x = \frac{{ - 2}}{3}\).
b)
\(\begin{array}{l}\frac{3}{4} - \left( {x - \frac{2}{3}} \right) = 1\frac{1}{3}\\x - \frac{2}{3} = \frac{3}{4} - 1\frac{1}{3}\\x - \frac{2}{3} = \frac{3}{4} - \frac{4}{3}\\x - \frac{2}{3} = \frac{9}{{12}} - \frac{{16}}{{12}}\\x - \frac{2}{3} = \frac{{ - 7}}{{12}}\\x = \frac{{ - 7}}{{12}} + \frac{2}{3}\\x = \frac{{ - 7}}{{12}} + \frac{8}{{12}}\\x = \frac{1}{12}\end{array}\)
Vậy\(x = \frac{1}{12}\).
c)
\(\begin{array}{l}1\frac{1}{4}:\left( {x - \frac{2}{3}} \right) = 0,75\\\frac{5}{4}:\left( {x - \frac{2}{3}} \right) = \frac{3}{4}\\x - \frac{2}{3} = \frac{5}{4}:\frac{3}{4}\\x - \frac{2}{3} = \frac{5}{4}.\frac{4}{3}\\x - \frac{2}{3} = \frac{5}{3}\\x = \frac{5}{3} + \frac{2}{3}\\x = \frac{7}{3}\end{array}\)
Vậy \(x = \frac{7}{3}\).
d)
\(\begin{array}{l}\left( { - \frac{5}{6}x + \frac{5}{4}} \right):\frac{3}{2} = \frac{4}{3}\\ - \frac{5}{6}x + \frac{5}{4} = \frac{4}{3}.\frac{3}{2}\\ - \frac{5}{6}x + \frac{5}{4} = 2\\ - \frac{5}{6}x = 2 - \frac{5}{4}\\ - \frac{5}{6}x = \frac{8}{4} - \frac{5}{4}\\ - \frac{5}{6}x = \frac{3}{4}\\x = \frac{3}{4}:\left( { - \frac{5}{6}} \right)\\x = \frac{3}{4}.\frac{{ - 6}}{5}\\x = \frac{{ - 9}}{{10}}\end{array}\)
Vậy \(x = \frac{{ - 9}}{{10}}\).
\(3.\)
\(\frac{x-1}{2011}+\frac{x-2}{2010}+\frac{x-3}{2009}=\frac{x-4}{2008}\)
\(\Rightarrow\)\(\frac{x-1}{2011}-1+\frac{x-2}{2010}-1+\frac{x-3}{2009}-1-\frac{x-4}{2008}+1+2=0\)
\(\Rightarrow\)\(\frac{x-1}{2011}-\frac{2011}{2011}+\frac{x-2}{2010}-\frac{2010}{2010}+\frac{x-3}{2009}-\frac{2009}{2009}-\frac{x-4}{2008}+\frac{2008}{2008}=0\)
\(\Rightarrow\)\(\frac{x-2012}{2011}+\frac{x-2012}{2010}+\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
\(\Rightarrow\)\(x-2012\left(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}\right)=0\)
\(\Rightarrow\)\(x=2012\)
\(\frac{x-1}{4}+\frac{x-2}{3}+\frac{x-3}{2}+\frac{x-4}{1}=4\)\(\Leftrightarrow\left(\frac{x-1}{4}-1\right)+\left(\frac{x-2}{3}-1\right)+\left(\frac{x-3}{2}-1\right)+\left(\frac{x-4}{1}-1\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{1}{4}+\frac{1}{3}+\frac{1}{2}+1\right)=0\Leftrightarrow x=5\)
\(\frac{\left(x+1\right)^2-\frac{x}{2}}{4}=\frac{\left(2x-3\right)^2}{3}-\frac{\frac{x+1}{4}-\frac{x\left(3-2x\right)}{3}}{4}\)
\(\Rightarrow3\left[\left(x+1\right)^2-\frac{x}{2}\right]=4\left(2x-3\right)^2-3\left[\frac{x+1}{4}-\frac{x\left(3-2x\right)}{3}\right]\)
\(\Rightarrow3\left(x+1\right)^2-\frac{3x}{2}=4\left(2x-3\right)^2-\frac{3\left(x+1\right)}{4}+\frac{3x\left(3-2x\right)}{3}\)
\(\Rightarrow36\left(x+1\right)^2-18x=48\left(2x-3\right)^2-9\left(x+1\right)+12x\left(3-2x\right)\)
=> 36.(x2 + 2x + 1) - 18x = 48.(4x2 - 12x + 9) - 9(x + 1) + 12x(3 - 2x)
=> 36x2 + 72x + 36 - 18x - 192x2 + 576x - 432 + 9x + 9 - 36x + 24x2 = 0
=> -132x2 + 603x - 387 = 0
Có: \(\Delta=603^2-4.\left(-387\right)\left(-132\right)=159273\Rightarrow\sqrt{\Delta}=\sqrt{159273}\)
\(\Rightarrow x=\frac{-603+\sqrt{159273}}{-264}\) hoặc \(x=\frac{-603-\sqrt{159273}}{-264}\)
Vậy phương trình có 2 nghiệm : x = \(\left\{\frac{-603+\sqrt{159273}}{-264};\frac{-603-\sqrt{159273}}{-264}\right\}\)
Câu này không có nghiệm nguyên nha bạn.
Câu 1,
x+y=-1/3 ; y+z=5/4 ; x+z= 4/3
=> 2(x+y+z)=9/4
=> x+y+z=9/8
Ta lại có: x+y=-1/3
=> z=9/8 -(-1/3)=35/24
Ta lại có: z+y=5/4
=> y=-5/24
=> x=.....
Câu 2:
\(-4\le x\le-\frac{11}{18}\)
đk: \(\begin{cases}x+2\ne0\\4-x>0\\6+x>0\end{cases}\)
ta có \(3\log_{\frac{1}{4}}\left(x+2\right)-3=3\log_{\frac{1}{4}}\left(4-x\right)+3\log_{\frac{1}{4}}\left(6+x\right)\) suy ra \(\log_{\frac{1}{4}}\left(x+2\right)-\log_{\frac{1}{4}}\frac{1}{4}=\log_{\frac{1}{4}}\left(4-x\right)\left(6+x\right)\) suy ra \(\log_{\frac{1}{4}}\left(x+2\right).\frac{1}{4}=\log_{\frac{1}{4}}\left(4-x\right)\left(6+x\right)\) suy ra \(\frac{x+2}{4}=\left(4-x\right)\left(6+x\right)\)
giải pt tìm ra x
đối chiếu với đk của bài ta suy ra đc nghiệm của pt
\(x+\frac{3}{4}=2-1\)
\(x+\frac{3}{4}=1\)
\(x=1-\frac{3}{4}\)
\(x=\frac{1}{4}\)
\(x+\frac{3}{4}=2-1\)
\(x+\frac{3}{4}=1\)
\(x=1-\frac{3}{4}\)
\(x=\frac{1}{4}\)