K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2017

đang cần gấp câu này nè 

6 tháng 3 2017

Giải:

Theo đề bài ta có:

\(\left\{\begin{matrix}2014a+3b+1\\2014^a+2014a+b\end{matrix}\right.\) là hai số lẻ

Nếu \(a\ne0\Rightarrow2014^a+2014a\) là số chẵn

Để \(2014^a+2014a+b\) là số lẻ \(\Rightarrow b\) phải là số lẻ

Nếu \(b\) là số lẻ \(\Rightarrow3b+1\) là số chẵn, do đó:

\(2014a+3b+1\) là số chẵn (không thỏa mãn)

Vậy \(a=0\)

Với \(a=0\Rightarrow\left(3b+1\right)\left(b+1\right)=225\)

\(b\in N\)

\(\Rightarrow\left(3b+1\right)\left(b+1\right)=3.75=5.45=9.25=1.225\)

\(3b+1⋮̸\)\(3;3b+1>b+1\)

\(\Rightarrow\left\{\begin{matrix}3b+1=25\\b+1=9\end{matrix}\right.\)\(\Rightarrow b=8\)

Vậy: \(\left\{\begin{matrix}a=0\\b=8\end{matrix}\right.\)

CÁC BẠN LÀM ĐƯỢC CÂU NÀO THÌ LÀM , KO BẮT BUỘC LÀM CẢ NHÉ. MÌNH CẢM ƠN TRƯỚC!Bài 1: Cho số nguyên x sao cho x chia cho 7 dư 2. Chứng tỏ rằng 2x + 3 chia hết 7.Bài 2: 1) Chứng minh rằng 20 + 21 + 22 + 23 + …. + 25n-3 + 25n-2 + 25n-1 chia hết cho 31 với n là số nguyên dương bất kì.         2) Hai số nguyên tố gọi là sinh đôi nếu chúng là hai số nguyên tố và là hai số lẻ liên tiếp. Chứng minh rằng số...
Đọc tiếp

CÁC BẠN LÀM ĐƯỢC CÂU NÀO THÌ LÀM , KO BẮT BUỘC LÀM CẢ NHÉ. MÌNH CẢM ƠN TRƯỚC!

Bài 1: Cho số nguyên x sao cho x chia cho 7 dư 2. Chứng tỏ rằng 2x + 3 chia hết 7.

Bài 2: 1) Chứng minh rằng 20 + 21 + 22 + 23 + …. + 25n-3 + 25n-2 + 25n-1 chia hết cho 31 với n là số nguyên dương bất kì.

         2) Hai số nguyên tố gọi là sinh đôi nếu chúng là hai số nguyên tố và là hai số lẻ liên tiếp. Chứng minh rằng số tự nhiên lớn hơn 4 và nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6.

Bài 3: Cho tam giác ABC có = 80 độ. Điểm D nằm giữa B và C sao cho = 20 độ. Trên nửa mặt phẳng chứa B bờ AC, vẽ tia Ax sao cho = 25 độ , tia này cắt CB ở E. 1) Chứng tỏ rằng E nằm giữa D và C. 2) Tính 3) Xác định vị trí của tia Ay nằm giữa hai tia AB và AC sao cho

Bài 4. 1) Tìm các số tự nhiên a, b thỏa mãn (2014a + 1)(2014a + 2) = 3b + 5

1
10 tháng 3 2020

bài 3 ::: toán 6 có tam giác OwO

mà góc gì = 80 độ z ?

11 tháng 9 2015

\(P=\frac{2014a}{ab+2014a+2014}+\frac{b}{bc+b+2014}+\frac{c}{ac+c+1}\)

\(P=\frac{a^2bc}{ab+a^2bc+abc}+\frac{ab}{abc+ab+a^2bc}+\frac{c}{ac+c+1}\)

\(P=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\)

\(P=\frac{ac+1+c}{1+ac+c}=1\)

21 tháng 4 2017

Ta có: \(2a^2+a=3b^2+b\Rightarrow2a^2-2b^2+a-b=b^2\)

\(\Rightarrow2\left(a-b\right)\left(a+b\right)+\left(a-b\right)=b^2\)

\(\Rightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\left(1\right)\)

Đặt \(ƯCLN\left(a-b;2a+2b+1\right)=d\) suy ra:

\(\hept{\begin{cases}\left(a-b\right)⋮d\\2a+2b+1⋮d\end{cases}}\)  \(\Rightarrow b^2=\left(a-b\right)\left(2a+2b+1\right)⋮d^2\)

\(\Rightarrow b⋮d\). Lại có:

\(2\left(a-b\right)-\left(2a+2b+1\right)⋮d\Rightarrow-4b-1⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Leftrightarrow a-b\) và \(2a+2b+1\) là hai số nguyên tố cùng nhau \(\left(2\right)\)

Kết hợp \(\left(1\right)\) và \(\left(2\right)\) suy ra:

\(a-b\) và \(2a+2b+1\) là các số chính phương (Đpcm)

10 tháng 11 2016

Câu 1:

Ta có: \(2a^2+a=3b^2+b\Rightarrow2a^2+a-3b^2-b=0\Rightarrow3\left(a^2-b^2\right)+\left(a-b\right)=a^2\)

\(\Rightarrow3\left(a-b\right)\left(a+b\right)+\left(a-b\right)=a^2\Rightarrow\left(a-b\right)\left(3a+3b+1\right)=a^2\)

Gọi \(ƯCLN\)\(\left(a-b;3a+3b+1\right)=d\)

=> \(a-b⋮d;3a+3b+1⋮d\Rightarrow\left(a-b\right)\left(3a+3b+1\right)⋮d^2\Rightarrow a^2⋮d^2\Rightarrow a⋮d\Rightarrow6a⋮d\left(1\right)\)

Mà ta lại có: \(3\left(a-b\right)+\left(3a+3b+1\right)⋮d\Rightarrow6a +1⋮d\left(2\right)\)

Từ 1 và 2 => \(d=1\) => \(a-b\)\(3a+3b+1\) là 2 số nguyên tố cùng nhau.

Và đồng thời \(3a+3b+1>a-b\Rightarrow\begin{cases}3a+3b+1=a^2\\a-b=1^2\end{cases}\)

Vậy \(3a+3b+1\)\(a-b\) đều là các số chính phương.

Câu 2:

Ta có: \(6x+5y+18=2xy\Rightarrow5y+18=2xy-6x=2x\left(y-3\right)\Rightarrow2x=\frac{5y+18}{y-3}=\frac{5\left(y-3\right)+33}{y-3}=5+\frac{33}{y-3}\)

Do \(x;y\in Z\Rightarrow\)\(\frac{33}{y-3}\in Z\Rightarrow33⋮y-3\Rightarrow y-3\inƯ\left(33\right)=\left\{\pm1;\pm3;\pm11;\pm33\right\}\)

Ta có bảng sau:

y-31-13-311-1133-33
2x-533-3311-113-31-1
2x38-2816-68264
x19-148-34132
y426014-936-30

 

Vậy \(\left(x;y\right)=\left(19;4\right);\left(-14;2\right);\left(8;6\right);\left(-3;0\right);\left(4;14\right);\left(1;-9\right);\left(3;36\right);\left(2;-30\right)\)

 

 

 

10 tháng 11 2016

Bạn nên ấn cái này để dễ nhìn hơn

Đại số lớp 8

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP