tìm x biết
\(\sqrt{x^2-10x+25}=x+3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(\sqrt{4-4x+x^2}=3\)
\(\Leftrightarrow\sqrt{\left(2+x\right)^2}=3\)
\(\Leftrightarrow\left|2+x\right|=3\)
TH1: \(\left|2-x\right|=2-x\) với \(2-x\ge0\Leftrightarrow x\le2\)
Pt trở thành:
\(2-x=3\) (ĐK: \(x\le2\) )
\(\Leftrightarrow x=2-3\)
\(\Leftrightarrow x=-1\left(tm\right)\)
TH2: \(\left|2-x\right|=-\left(2-x\right)\) với \(2-x< 0\Leftrightarrow x>2\)
Pt trở thành:
\(-\left(2-x\right)=3\) (ĐK: \(x>2\))
\(\Leftrightarrow-2+x=3\)
\(\Leftrightarrow x=3+2\)
\(\Leftrightarrow x=5\left(tm\right)\)
Vậy \(S=\left\{-1;5\right\}\)
√(x² + x + 1) = 1
⇔ x² + x + 1 = 1
⇔ x² + x = 0
⇔ x(x + 1) = 0
⇔ x = 0 hoặc x + 1 = 0
*) x + 1 = 0
⇔ x = -1
Vậy x = 0; x = -1
--------------------
√(x² + 1) = -3
Do x² ≥ 0 với mọi x
⇒ x² + 1 > 0 với mọi x
⇒ x² + 1 = -3 là vô lý
Vậy không tìm được x thỏa mãn yêu cầu
--------------------
√(x² - 10x + 25) = 7 - 2x
⇔ √(x - 5)² = 7 - 2x
⇔ |x - 5| = 7 - 2x (1)
*) Với x ≥ 5, ta có
(1) ⇔ x - 5 = 7 - 2x
⇔ x + 2x = 7 + 5
⇔ 3x = 12
⇔ x = 4 (loại)
*) Với x < 5, ta có:
(1) ⇔ 5 - x = 7 - 2x
⇔ -x + 2x = 7 - 5
⇔ x = 2 (nhận)
Vậy x = 2
--------------------
√(2x + 5) = 5
⇔ 2x + 5 = 25
⇔ 2x = 20
⇔ x = 20 : 2
⇔ x = 10
Vậy x = 10
-------------------
√(x² - 4x + 4) - 2x +5 = 0
⇔ √(x - 2)² - 2x + 5 = 0
⇔ |x - 2| - 2x + 5 = 0 (2)
*) Với x ≥ 2, ta có:
(2) ⇔ x - 2 - 2x + 5 = 0
⇔ -x + 3 = 0
⇔ x = 3 (nhận)
*) Với x < 2, ta có:
(2) ⇔ 2 - x - 2x + 5 = 0
⇔ -3x + 7 = 0
⇔ 3x = 7
⇔ x = 7/3 (loại)
Vậy x = 3
1)
\(\Leftrightarrow x^2+x+1=1^2=1\\ \Leftrightarrow x^2+x=0\\ \Leftrightarrow x\left(x+1\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
2) Do \(x^2+1>0\forall x\) nên \(x\in\varnothing\)
3)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=7-2x\\ \Leftrightarrow\left|x-5\right|=7-2x\)
Nếu \(x\ge5\) thì
\(\Leftrightarrow x-5-7+2x=0\\ \Leftrightarrow3x-12=0\\ \Leftrightarrow3x=12\\ \Rightarrow x=4\)
=> Loại trường hợp này
Nếu \(x< 5\) thì
\(\Leftrightarrow5-x-7+2x=0\\ \Leftrightarrow x-2=0\\ \Rightarrow x=2\)
=> Nhận trường hợp này
Vậy x = 2
4)
\(\Leftrightarrow2x+5=5^2=25\\ \Leftrightarrow2x=25-5=20\\ \Rightarrow x=\dfrac{20}{2}=10\)
5)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}-2x+5=0\\ \Leftrightarrow\left|x-2\right|-2x+5=0\)
Nếu \(x\ge2\) thì
\(\Leftrightarrow x-2-2x+5=0\\ \Leftrightarrow3-x=0\\ \Rightarrow x=3\)
=> Nhận trường hợp này
Nếu \(x< 2\) thì
\(\Leftrightarrow2-x-2x+5=0\\ \Leftrightarrow7-3x=0\\ \Leftrightarrow3x=7\\ \Rightarrow x=\dfrac{7}{3}\)
=> Loại trường hợp này
Vậy x = 3
a) \(7x\left(x+1\right)-3\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(7x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\7x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{3}{7}\end{matrix}\right.\)
b) 3(x + 8) - x2 - 8x = 0
=> 3(x + 8) - (x2 + 8x) = 0
=> 3(x + 8) - x(x + 8) = 0
=> (x + 8)(3 - x) = 0 => \(\left[{}\begin{matrix}x+8=0\\3-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-8\\x=3\end{matrix}\right.\)
c) \(x^2-10x=-25\Rightarrow x^2-10x+25=0\Rightarrow\left(x-5\right)^2=0\Rightarrow x=5\)
d) Giống câu c
a) 7x(x+1)−3(x+1)=0⇒(x+1)(7x−3)=07x(x+1)−3(x+1)=0⇒(x+1)(7x−3)=0
⇒[x+1=07x+3=0⇒⎡⎣x=−1x=−37⇒[x+1=07x+3=0⇒[x=−1x=−37
b) 3(x + 8) - x2 - 8x = 0
=> 3(x + 8) - (x2 + 8x) = 0
=> 3(x + 8) - x(x + 8) = 0
=> (x + 8)(3 - x) = 0 => [x+8=03−x=0⇒[x=−8x=3[x+8=03−x=0⇒[x=−8x=3
c) x2−10x=−25⇒x2−10x+
\(\sqrt{x^2-25}+\sqrt{x^2+10x+25}=0.\)
\(\Rightarrow\sqrt{x^2-5^2}+\sqrt{x^2+2.5.x+5^2}=0\)
\(\Rightarrow\sqrt{\left(x-5\right).\left(x+5\right)}+\sqrt{\left(x+5\right)^2}=0\)
\(\Rightarrow\sqrt{\left(x+5\right).\left(x-5+1\right)}=0\)
\(\Rightarrow\hept{\begin{cases}x+5=0\\x-5+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\x-4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\x=4\end{cases}}\)
Vậy \(x=\hept{\begin{cases}-5\\4\end{cases}}\)
a: TH1: x>=2
A=x+x-2=2x-2
TH2: x<2
A=x+2-x=2
b: TH1: x>=3
A=x-3-x=-3
TH2: x<3
A=3-x-x=-2x+3
c: TH1: x>=1
C=x-x+1=1
TH2: x<1
C=x+x-1=2x-1
d: TH1: m>=3
C=m-3-2m=-3-m
TH2: m<3
C=-m+3-2m=-3m+3
e: TH1: m>=1
E=m-m+1=1
TH2: m<1
E=m+m-1=2m-1
a, \(\sqrt{x^2-4x+4}=3\Leftrightarrow\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow x-2=3\Leftrightarrow x=5\)
b, \(\sqrt{x^2-10x+25}=x+3\Leftrightarrow\sqrt{\left(x-5\right)^2}=x+3\)
\(\Leftrightarrow x-5=x+3\Leftrightarrow0\ne8\)( vô nghiệm )
1) ĐKXĐ: \(x\ge\dfrac{5}{2}\)
\(\sqrt{x^2}=2x-5\\ \Rightarrow\left|x\right|=2x-5\\ \Rightarrow\left[{}\begin{matrix}x=2x-5\\x=5-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)
2) ĐKXĐ: \(x\ge3\)
\(\sqrt{25x^2-10x+1}=2x-6\\ \Rightarrow\left|5x-1\right|=2x-6\\ \Rightarrow\left[{}\begin{matrix}5x-1=2x-6\\5x-1=6-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\left(ktm\right)\\x=1\left(tm\right)\end{matrix}\right.\)
3) ĐKXĐ: \(x\ge\dfrac{5}{2}\)
\(\sqrt{25-10x+x^2}=2x-5\\ \Rightarrow\left|x-5\right|=2x-5\\ \Rightarrow\left[{}\begin{matrix}x-5=2x-5\\x-5=5-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=\dfrac{10}{3}\left(tm\right)\end{matrix}\right.\)
4) ĐKXĐ: \(x\ge\dfrac{1}{2}\)
\(\sqrt{1-2x+x^2}=2x-1\\ \Rightarrow\left|x-1\right|=2x-1\\ \Rightarrow\left[{}\begin{matrix}x-1=2x-1\\x-1=1-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=\dfrac{2}{3}\left(tm\right)\end{matrix}\right.\)
1) \(\Leftrightarrow3\sqrt{5x}-4\sqrt{5x}+8\sqrt{5x}=21\)
\(\Leftrightarrow7\sqrt{5x}=21\)
\(\Leftrightarrow\sqrt{5x}=3\)
\(\Leftrightarrow5x=9\)
\(\Leftrightarrow x=\frac{9}{5}\)
2)\(\Leftrightarrow x^2-10x+25=16\)
\(\Leftrightarrow x^2-10x+9=0\)
\(\Leftrightarrow\left(x-9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-9=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x=1\end{cases}}\)
ĐKXĐ : \(x\ge-3\)
\(\sqrt{x^2-10x+25}=x+3\)
\(\Leftrightarrow\left|x-5\right|=x+3\)
TH1. Nếu x < 5 , pt trở thành 5-x = x+3 <=> x = 1 (thỏa mãn)
TH2. Nếu \(x\ge5\)pt trở thành x - 5 = x + 3 => -5 = 3 (vô lí)
Vậy x = 1