cho a/b=c/d chứng minh 5a+c/5b+d=5a-c/5b-d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sẽ lần lượt chứng minh:\(\frac{a}{b}\)<\(\frac{5a+2c}{5b+2d}\)và \(\frac{5a+2c}{5b+2d}\)<\(\frac{c}{d}\)
Ta có: \(\frac{a}{b}\)<\(\frac{5a+2c}{5b+2d}\)
\(\Leftrightarrow\)a(5b+2d)<b(5a+2c)
\(\Leftrightarrow\)5ab+2ad<5ab+2bc
\(\Leftrightarrow\)2ad<2bc\(\Leftrightarrow\)ad<bc\(\Leftrightarrow\)\(\frac{a}{b}\)<\(\frac{c}{d}\)(đúng theo giả thiết)
Do vậy:\(\frac{a}{b}\)<\(\frac{5a+2c}{5b+2d}\)
Với lập luận tương tự ta cũng chứng minh được \(\frac{5a+2c}{5b+2d}\)<\(\frac{c}{d}\)
Vậy \(\frac{a}{b}\)<\(\frac{5a+2c}{5b+2d}\)<\(\frac{c}{d}\)
a)a/b=c/d=a+b/c+d=a-b/c-d(tc day ti so bang nhau)
=>a+b/a-b=c+d/c-d
b)a/b=c/d=>5a/5b=2c/2d=5a+2c/5c+2d(*) va a/b=4c/4d=a-4c/c-4d(**)
c)a/b=c/d=a+b/c+d=>(a/b)^2=ab/cd=(a+b/c+d)^2
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)
\(\Rightarrow\frac{5a+5b}{5b}=\frac{5b\left(k+1\right)}{5b}=k+1\)
\(\frac{c^2+cd}{cd}=\frac{k^2d^2+kd^2}{kd^2}=\frac{kd^2\left(k+1\right)}{kd^2}=k+1\)
\(\Rightarrow\frac{5a+5b}{5b}=\frac{c^2+cd}{cd}\)
\(\)\(\frac{5a+5b}{5b}=\frac{5a}{5b}+\frac{5b}{5b}=\frac{a}{b}+1\)
\(\frac{c^2+cd}{cd}=\frac{c^2}{cd}+\frac{cd}{cd}=\frac{c}{d}+1\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{5a+5b}{5b}=\frac{c^2+cd}{cd}\)
\(\Rightarrowđpcm\)
Ta có : \(A=5a+5a=5\left(a+b\right)\)
- Thay \(a+b=5\) vào A ta được :
\(A=5.5=25\)
Ta có : \(B=13a+5b+13b+5a\)
\(=13\left(a+b\right)+5\left(a+b\right)\)
\(=18\left(a+b\right)\)
- Thay \(a+b=5\) vào B ta được :
\(B=18.5=90\)
Ta có : \(C=5a+16b+4b+15a\)
\(=20a+20b\)
\(=20\left(a+b\right)\)
- Thay \(a+b=5\) vào C ta được :
\(C=20.5=100\)
Ta có : \(D=13a+19b+4a-2b\)
\(=17a+17b\)
\(=17\left(a+b\right)\)
- Thay \(a+b=5\) vào D ta được :
\(D=17.5=85\)