K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2016

( 2^n+1).(2^n+2)

=2^(n+n) .1+2

=2^(n+n)3

Vì tất cả các tổng hoặc tích có chữ số 3 thì chắc chắn sẽ chia hết cho 3

5 tháng 11 2017

ban kia lam dung roi do

k tui nha

thanks

20 tháng 10 2019

( 2n + 2 ).( 2n + 4 ) chia hết cho 8

Chứng tỏ rằng vì :

Ta thấy n phải là số chẵn mà 2n + 2 đã là số chẵn 

2n + 4 đã là số chẵn vì \(⋮\) cho 2

Nên chứng tỏ:

\(n+\left(2.4\right)⋮8\)

=> n + 8 chia hết cho 8

=> ( 2n + 2 ).( 2n + 4 ) chia hết cho 8 

20 tháng 10 2019

Ta có : ( 2n + 2 ).( 2n + 4 )   

\(\Rightarrow\) 4n2 + 4n + 8n + 8 

Vì 8n \(⋮\)8 ; 8\(⋮\)8 ; 4n thuộc ước của 8

\(\Rightarrow\)4n2 + 4n + 8n + 8 \(⋮\)8

\(\Rightarrow\)( 2n + 2 )( 2n + 4 ) chia hết cho 8 

\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)\)

Vì n;n+1;n+2 là ba số liên tiếp

nên \(n\left(n+1\right)\left(n+2\right)⋮3!=6\)

AH
Akai Haruma
Giáo viên
21 tháng 7 2024

Lời giải:

$a+a^2+a^3+...+a^{2n}=(a+a^2)+(a^3+a^4)+...+(a^{2n-1}+a^{2n})$

$=a(a+1)+a^3(a+1)+....+a^{2n-1}(a+1)$

$=(a+1)(a+a^3+....+a^{2n-1})\vdots a+1$

10 tháng 11 2016

de do de ban ve hoi me

15 tháng 10 2019

c) \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)Vì n nguyên

\(\Rightarrow-5n⋮5\left(đpcm\right)\)

15 tháng 10 2019

a) \(\left(2n+3\right)^2-9\)

\(=\left(2n+3-3\right)\left(2n+3+3\right)\)

\(=2n\left(2n+6\right)\)

\(=4n\left(n+3\right)\)

Do \(n\in Z\Rightarrow n+3\in Z\)

\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)

19 tháng 7 2018

a)  \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)\(⋮\)\(5\)

b)  \(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\)

\(=3n-2n^2-3+2n-n^2-5n\)

\(=-3n^2-3\)

\(=-3\left(n^2+1\right)\)\(⋮\)\(3\)

17 tháng 6 2017

a, Ta có:

\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)

\(=9^n.3-2^n.3+2^n.7=3\left(9^n-2^n\right)+2^n.7\)

Ta lại có:

\(9^n-2^n⋮9-2=7;2n.7⋮7\)

\(\Rightarrow3^{2n+1}+2^{n+2}⋮7\left(dpcm\right)\)