x^2-10x=-25
x^3+y=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 + y2 + 10x + 6y + 34 = 0
=> (x2 + 10x + 25) + (y2 + 6y + 9) = 0
=> (x + 5)2 + (y + 3)2 = 0
=> \(\hept{\begin{cases}x+5=0\\y+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Vậy x = - 5 ; y = -3
b) 25x2 + 4y2 + 10x + 4y + 2 = 0
=> (25x2 + 10x + 1) + (4y2 + 4y + 1) = 0
=> (5x + 1)2 + (2y + 1)2 = 0
=> \(\hept{\begin{cases}5x+1=0\\2y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-0,2\\y=-0,5\end{cases}}\)
Vậy x = -0,2 ; y = -0,5
a)
\(x^2+10x+25+y^2+6y+9=0\)
\(\left(x+5\right)^2+\left(y+3\right)^2=0\) ( 1 )
Ta có :
\(\left(x+5\right)^2\ge0\forall x\)
\(\left(y+3\right)^2\ge0\forall y\)
\(\left(1\right)=0\Leftrightarrow\hept{\begin{cases}\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\)
\(\hept{\begin{cases}x+5=0\\y+3=0\end{cases}}\)
\(\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
b)
\(25x^2+10x+1+4y^2+4y+1=0\)
\(\left(5x+1\right)^2+\left(2y+1\right)^2=0\) ( 1 )
Ta có :
\(\left(5x+1\right)^2\ge0\forall x\)
\(\left(2y+1\right)^2\ge0\forall y\)
\(\left(1\right)=0\Leftrightarrow\hept{\begin{cases}\left(5x+1\right)^2=0\\\left(2y+1\right)^2=0\end{cases}}\)
\(\hept{\begin{cases}5x+1=0\\2y+1=0\end{cases}}\)
\(\hept{\begin{cases}x=\frac{-1}{5}\\y=\frac{-1}{2}\end{cases}}\)
a) =2x - 3 =0
x = 3/2
b) (5x -1)2 = 0
5x - 1 = 0
x = 1/5
c) = ( x +3)2 = 0
x+3 = 0
x = -3
d) =(13+y)(13-y) = 0
y = 13; -13
e) xem lại đề bài này
Bài 1:Tìm x,y biết:
a)\(x^2-6x+y^2+10y+34\)
=>\(\left(x^2-2.x.3+3^2\right)+\left(y^2+2.y.5+5^2\right)=0\)
=>\(\left(x-3\right)^2+\left(y+5\right)^2=0\)
=>\(\left\{{}\begin{matrix}x-3=0\\y+5=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=3\\y=-5\end{matrix}\right.\)
a, \(x^3+3x^2-\left(x+3\right)=0\Leftrightarrow x^2\left(x+3\right)-\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+3\right)=0\Leftrightarrow x=1;x=-1;x=-3\)
b, \(15x-5+6x^2-2x=0\Leftrightarrow5\left(3x-1\right)+2x\left(3x-1\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(3x-1\right)=0\Leftrightarrow x=-\frac{5}{2};x=\frac{1}{3}\)
c, \(5x-2-25x^2+10x=0\)
\(\Leftrightarrow\left(5x-2\right)-5x\left(5x-2\right)=0\Leftrightarrow\left(1-5x\right)\left(5x-2\right)=0\Leftrightarrow x=\frac{2}{5};x=\frac{1}{5}\)
a)
\(\left(x+2\right)^2-9=0\)
\(\Rightarrow\left(x+2\right)^2=9=3^2\)
\(\Rightarrow x+2=\pm3\)
\(\Rightarrow x=-5;1\)
b)
\(25x^2-10x+1=0\)
\(\left(5x\right)^2-2\cdot5x+1^2=0\)
\(\Rightarrow\left(5x+1\right)^2=0\)
\(\Rightarrow5x+1=0\)
\(\Rightarrow5x=-1;x=\dfrac{-1}{5}\)
c)
\(x^2+14x+49=0\)
\(\Rightarrow x^2+2\cdot7x+7^2=0\)
\(\Rightarrow\left(x+7\right)^2=0;x+7=0\)
\(\Rightarrow x=-7\)
d)
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(4x^2-4x+1+x^2+6x+9-5x^2+5\cdot49=0\)
\(\Rightarrow5x^2-5x^2-4x+6x+10+245=0\)
\(\Rightarrow2x+255=0\)
\(\Rightarrow2x=-255\)
\(\Rightarrow x=\dfrac{-255}{2}\)
a.
\(\sqrt{4x^2+4x+1}-\sqrt{25x^2+10x+1}=0\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}-\sqrt{\left(5x+1\right)^2}=0\)
\(\Leftrightarrow2x+1-\left(5x+1\right)=0\)
\(\Leftrightarrow-3x=0\Leftrightarrow x=0\)
b.
\(\sqrt{x^4-16x^2+64}=\sqrt{25x^2+10x+1}\)
\(\Leftrightarrow\sqrt{\left(x^2-8\right)^2}=\sqrt{\left(5x+1\right)^2}\)
\(\Leftrightarrow x^2-8=5x+1\)
\(\Leftrightarrow x^2-5x+\dfrac{25}{4}=\dfrac{61}{4}\)
\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2=\dfrac{61}{4}\)
............................
tương tự ..
c: \(\Leftrightarrow\sqrt{x-5}\left(\sqrt{x+5}-1\right)=0\)
=>x-5=0 hoặc x+5=1
=>x=-4 hoặc x=5
d: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)
=>2x+3=0 hoặc 2x-3=4
=>x=7/2 hoặc x=-3/2
e: \(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)
=>x-2=0 hoặc 3 căn x+2=1
=>x=2 hoặc x+2=1/9
=>x=-17/9 hoặc x=2
1, \(3x\left(x-7\right)+2x-14=0\)
\(\Rightarrow3x\left(x-7\right)+2\left(x-7\right)=0\)
\(\Rightarrow\left(x-7\right)\left(3x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=\frac{-2}{3}\end{cases}}\)
2, \(x^3+3x^2-\left(x+3\right)=0\)
\(\Rightarrow x^2\left(x+3\right)-\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-1\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\pm1\end{cases}}\)
3, \(15x-5+6x^2-2x=0\)
\(\Rightarrow\left(15x-5\right)+\left(6x^2-2x\right)=0\)
\(\Rightarrow5\left(3x-1\right)+2x\left(3x-1\right)=0\)
\(\Rightarrow\left(3x-1\right)\left(5+2x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-1=0\\5+2x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=\frac{-5}{2}\end{cases}}\)
4, \(5x-2-25x^2+10x=0\)
\(\Rightarrow\left(5x-25x^2\right)-\left(2-10x\right)=0\)
\(\Rightarrow5x\left(1-5x\right)-2\left(1-5x\right)=0\)
\(\Rightarrow\left(1-5x\right)\left(5x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}1-5x=0\\5x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{2}{5}\end{cases}}\)
SUY RA \(x^4+x^3-11x^3-11x^2+36x^2-36=0\)
\(\Leftrightarrow x^3\left(x+1\right)-11x^2\left(x+1\right)+36\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^3-11x^2+36x-36\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-3\right)\left(x-2\right)\left(x+1\right)=0\)
suy ra x=-1 hoặc x=6 hoặc x=3 hoặc x=2
mk làm hơi tắt nhưng vẫn dk k nha
a) 2x2 - 98 = 0
2x2 = 0 + 98
2x2 = 98
x2 = 98 : 2
x2 = 49
x = \(\sqrt{49}\)
=> x = 7
Ta có : 2x2 - 98 = 0
=> 2(x2 - 49) = 0
Mà : 2 > 0
Nên x2 - 49 = 0
=> x2 = 49
=> x2 = -7;7
(x-5)2=0 nên x=5
suy ra y=-125