K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2021

\(\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)

\(=\frac{x-1}{x}\frac{y-1}{y}\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)

\(=\frac{xy-x-y+1}{xy}\left(1+\frac{1}{y}+\frac{1}{x}+\frac{1}{xy}\right)\)

\(=\frac{-\left(x+y\right)+1}{xy}\left(\frac{xy+x+y+1}{xy}\right)=1+\frac{2}{xy}\)

 mà \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

\(\Rightarrow1+\frac{2}{\frac{1}{4}}=9\)Dấu ''='' xảy ra khi \(x=y=\frac{1}{2}\)

NV
12 tháng 8 2021

Đặt \(\left\{{}\begin{matrix}x+\sqrt{x^2+1}=a>0\\y+\sqrt{y^2+1}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2+1}=a-x\\\sqrt{y^2+1}=b-y\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2ax=a^2-1\\2by=b^2-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{a^2-1}{2a}\\y=\dfrac{b^2-1}{2b}\end{matrix}\right.\)

 \(\Rightarrow\left(\dfrac{a^2-1}{2a}+\sqrt{\left(\dfrac{b^2-1}{2b}\right)+1}\right)\left(\dfrac{b^2-1}{2b}+\sqrt{\left(\dfrac{a^2-1}{2a}\right)+1}\right)=1\)

\(\Rightarrow\left(\dfrac{a^2-1}{2a}+\dfrac{b^2+1}{2b}\right)\left(\dfrac{b^2-1}{2b}+\dfrac{a^2+1}{2a}\right)=1\)

\(\Rightarrow\left(\dfrac{a+b}{2}+\dfrac{a-b}{2ab}\right)\left(\dfrac{a+b}{2}-\dfrac{a-b}{2ab}\right)=\dfrac{4ab}{4ab}=\dfrac{\left(a+b\right)^2}{4ab}-\dfrac{\left(a-b\right)^2}{4ab}\)

\(\Rightarrow\dfrac{\left(a+b\right)^2}{4}-\dfrac{\left(a+b\right)^2}{4ab}-\dfrac{\left(a-b\right)^2}{4\left(ab\right)^2}+\dfrac{\left(a-b\right)^2}{4ab}=0\)

\(\Rightarrow\dfrac{\left(a+b\right)^2}{4}\left(1-\dfrac{1}{ab}\right)+\dfrac{\left(a-b\right)^2}{4ab}\left(1-\dfrac{1}{ab}\right)=0\)

\(\Rightarrow\left(1-\dfrac{1}{ab}\right)\left(\dfrac{\left(a+b\right)^2}{4}+\dfrac{\left(a-b\right)^2}{4ab}\right)=0\)

\(\Rightarrow1-\dfrac{1}{ab}=0\Rightarrow ab=1\)

\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

\(\Rightarrow x+y=0\Rightarrow y=-x\)

\(P=2\left(x^2+\left(-x\right)^2\right)+0=4x^2\ge0\)

Dấu "=" xảy ra khi \(x=y=0\)

6 tháng 5 2017

áp dụng BĐT\(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\)(x,y>0)

=>A=\(\frac{1}{xy}+\frac{2}{x^2+y^2}=\frac{2}{2xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)>=\frac{2.4}{2xy+X^2+Y^2}=\frac{8}{\left(x+y\right)^2}=8\)

dấu bằng xảy ra khi x=y=1/2

27 tháng 5 2018

\(VT=6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(=6\left(x+y+z\right)^2-2\left(xy+yz+xz\right)+2\frac{9}{2x+y+z+x+2y+z+x+y+2z}\)

\(\ge6\left(x+y+z\right)^2-2\frac{\left(x+y+z\right)^2}{3}+2\frac{9}{4\left(x+y+z\right)}\)

\(=\: 6\cdot\left(\frac{3}{4}\right)^2-2\cdot\frac{\left(\frac{3}{4}\right)^2}{3}+2\cdot\frac{9}{4\cdot\frac{3}{4}}=9\)

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự