Tính tổng dẫy số sau :
S = 7 + 72 + ..... + 77 + 78
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
#include <bits/stdc++.h>
using namespace std;
long long x,i,n,t;
int main()
{
cin>>n;
t=0;
for (i=1; i<=n; i++)
{
cin>>x;
t=t+x;
}
cout<<t;
return 0;
}
71 + 72 + 73 + 74 + 75 + 76 + 77 + 78 + 79
= ( 71 + 79 ) + ( 72 + 78 ) + ( 73 + 77 ) + ( 74 + 76 ) + 75
= 150 + 150 + 150 + 150 + 75
= 150 x 4 + 75
= 600 + 75
= 675
Tìm x :
X x 7 + X x 2 = 108
X x ( 7 + 2 ) = 108
X x 9 = 108
X = 108 : 9
X = 12
\(71+72+73+74+75+76+77+78+79\)
\(=\left(71+79\right)+\left(72+78\right)+\left(73+77\right)+\left(74+76\right)+75\)
\(=150+150+150+150+75\)
\(=600+75\)
\(=675\)
\(X\)x\(7+X\)x\(2=108\)
\(X\)x\(\left(7+2\right)=108\)
\(X\)x\(9=108\)
\(X=108:9\)
\(X=12\)
Vậy \(X=12\)
\(A=7+7^2+7^3+7^4+7^5+7^6+7^7+7^8\)
\(A=\left(7+7^3\right)+\left(7^2+7^4\right)+\left(7^5+7^7\right)+\left(7^6+7^8\right)\)
\(A=7\cdot\left(7+7^2\right)+7^2\cdot\left(1+7^2\right)+7^5\cdot\left(1+7^2\right)+7^6\cdot\left(1+7^2\right)\)
\(A=7\cdot50+7^2\cdot50+7^5\cdot50+7^6\cdot50\)
\(A=50\cdot\left(7+7^2+7^5+7^6\right)\)
\(A=5\cdot10\cdot\left(7+7^2+7^5+7^6\right)\)
Ta có: 5 ⋮ 5
⇒ \(A=5\cdot10\cdot\left(7+7^2+7^5+7^6\right)\) ⋮ 5 (đpcm)
A = 7 + 72 + 73 + 74 + 75 + 76 + 77 + 78
A = (7 + 73) + (72+ 74) + (75 + 77) + (76 + 78)
A = 7.(1 + 72) + 72.(1 + 72) + 75.(1 + 72) + 76.(1 + 72)
A = 7.( 1 + 49) + 72.( 1 + 49) + 75.(1 + 49) + 76. (1 + 49)
A = 7.50 + 72.50 + 75.50 + 76.50
A = 50.(7 + 72 + 75 + 76)
Vì 50 ⋮ 5 nên A = 50.(7 + 72 + 76) ⋮ 5 đpcm
\(A=7+7^2+7^3+...+7^7+7^8\)
a) Lũy thừa với cơ số 7 có chữ số tận cùng là số lẻ
Mà A có 8 số hạng
Nên a là số chẵn (vì có 8 số có chữ số tận cùng là chữ số lẻ cộng lại)
b) Các chữ số tận cùng của 8 số hạng trên lần lượt là:
7; 9; 3; 1; 7; 9; 3; 1
\(\Rightarrow A\) có chữ số tận cùng là 0
\(\Rightarrow A⋮5\)
Cách 2:
a) Ta có:
\(A=7+7^2+7^3+...+7^7+7^8\) \(=6725600\) có chữ số tận cùng là 0 nên A là số chẵn
b) Do A có chữ số tận cùng là 0 nên A chia hết cho 5
6725600