K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2016

Giúp mình đi

9 tháng 8 2015

câu b dấu hơi lộn xộn, bạn kiểm tra lại đề.

9 tháng 8 2015

B = 7101-7100-799-...-7-1

B = -(7101+7100+799+...+7+1) 

Đặt D = 1+7+72+....+7101

7D = 7+72+73+...+7102

6D = 7D - D = 7102-1

=> D = \(\frac{7^{102}-1}{6}\)

=> B = \(-\left(\frac{7^{102}-1}{6}\right)\)

 

26 tháng 3 2017

Đặt \(S=\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{4n-2}}-\dfrac{1}{7^{4n}}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}\)

\(\Rightarrow\dfrac{S}{7^2}=\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}-\dfrac{1}{7^{102}}\)

\(\Rightarrow S+\dfrac{S}{7^2}=\left(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}\right)+\left(\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}-\dfrac{1}{7^{102}}\right)\)

\(\Leftrightarrow\dfrac{50S}{49}=\dfrac{1}{7^2}-\dfrac{1}{7^{102}}< \dfrac{1}{7^2}=\dfrac{1}{49}< \dfrac{1}{50}\)

\(\Leftrightarrow S< \dfrac{1}{50}\)

Vậy \(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}< \dfrac{1}{50}\) (Đpcm)

B = 1 + 7 + 72 + 73 + .. + 750 

7B = 7 + 72 + 73 + ... + 751 

7B-B = 751 - 1 

6B = 751 - 1 

B = \(\frac{7^{51}-1}{6}\)

Study well 

14 tháng 9 2019

                                                      Bài giải

\(B=1+7+7^2+7^3+7^4+...+7^{50}\)

\(7B=7+7^2+7^3+7^4+7^5+...+7^{51}\)

\(7B-B=6B=7^{51}-1\)

\(B=\frac{7^{51}-1}{6}\)

Ta có:

Đặt A=\(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{50}}\)

⇒7A=\(\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{51}}\)

⇒7A-A=\(\frac{1}{7^{51}}-\frac{1}{7}\)

⇒6A=\(\frac{1}{7^{51}}-\frac{1}{7}\)⇒A=\(\frac{1}{6.7^{51}}-\frac{1}{6.7}\)

⇒C=\(\frac{1}{6.7^{51}}-\frac{1}{6.7}\)+\(\frac{1}{6.7^{50}}\)

=\(\frac{4}{3.7^{51}}-\frac{1}{42}\)

9 tháng 5 2023

Hôm nay olm sẽ hướng dẫn em mẹo giải các dạng toán nâng cao kiểu này như sau:

                 Vì tất cả các mẫu số của các phân số có trong tích A đều bằng nhau nên chắn chắn không thể rút gọn tử số cho mẫu số được.

Với những trường hợp này tích luôn luôn bằng không quan trọng là em phải chỉ ra được trong tích A có chứa 1 thừa số bằng 0

A = (1- \(\dfrac{1}{7}\))\(\times\)(1-\(\dfrac{2}{7}\))\(\times\)(1-\(\dfrac{3}{7}\))\(\times\)...\(\times\)(1-\(\dfrac{49}{7}\))\(\times\)(1-\(\dfrac{50}{7}\))

A = (1- \(\dfrac{1}{7}\))\(\times\)(1-\(\dfrac{2}{7}\))\(\times\)(1-\(\dfrac{3}{7}\))\(\times\)(1-\(\dfrac{4}{7}\))\(\times\)(1-\(\dfrac{5}{7}\))\(\times\)(1-\(\dfrac{6}{7}\))\(\times\)(1-\(\dfrac{7}{7}\))\(\times\)...\(\times\)(1-\(\dfrac{50}{7}\))

A = (1-\(\dfrac{1}{7}\))\(\times\)(1-\(\dfrac{2}{7}\))\(\times\)(1-\(\dfrac{3}{7}\))\(\times\)(1-\(\dfrac{4}{7}\))\(\times\)(1-\(\dfrac{5}{7}\))\(\times\)(1-\(\dfrac{6}{7}\))\(\times\)0\(\times\)...\(\times\)(1-\(\dfrac{50}{7}\))

A = 0