chứng minh
n2-3n +1)(n+2) - n3 +2 chia hết cho 5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(n^3-2⋮n-2\)
=>\(n^3-8+6⋮n-2\)
=>\(6⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
b: \(n^3-3n^2-3n-1⋮n^2+n+1\)
=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
=>\(3⋮n^2+n+1\)
=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)
mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)
nên \(n^2+n+1\in\left\{1;3\right\}\)
=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
Có: \(n^3+3n^2+2n=n^3+n^2+2n^2+2n\)
\(=n^2\left(n+1\right)+2n\left(n+1\right)=\left(2n+n^2\right)\left(n+1\right)\)
\(=n\left(n+2\right)\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)
Có \(n;n+1;n+2\)là 3 số nguyên liên tiếp
\(\Rightarrow\)trong đó có một số chia hết cho 3; có ít nhất một số chia hết cho 2
\(\Rightarrow\)\(n\left(n+1\right)\left(n+2\right)\)chia hết cho \(2\times3\)
\(\Rightarrow\)\(n\left(n+1\right)\left(n+2\right)\)chia hết cho 6
\(\Rightarrow\)\(n^3+3n^2+2n\)chia hết cho 6
Bạn Phạm Trần Minh Ngọc làm thiếu rồi, mình phải có thêm dữ kiện 2 và 3 là 2 số nguyên tố cùng nhau nữa mới đủ ~~
Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.
\(n^2\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)n\)
Ta có:
\(\left\{{}\begin{matrix}\left(n-1\right).n.\left(n-1\right)\text{⋮}3\\\left(n-1\right)n\text{⋮}2\\\left(n+1\right)n\text{⋮}2\end{matrix}\right.\)
⇒ \(n\left(n-1\right)n\left(n+1\right)\text{⋮}2.2.3=12\)
a: \(=n^2+5n-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6⋮6\)
b: \(=\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+2n^2+3n^2+6n-n-2-n^3+2\)
\(=5n^2+5n⋮5\)
c: \(=6n^2+30n+n+5-6n^2-3n-10n-5\)
\(=18n⋮2\)
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
a,A=(n-1).(n+1)-n^2+3n-5
= n^2 - 1 - n^2 + 3n - 5
= 3n - 6
= 3(n - 2) chia hết cho 3
b,A=(2n-1).(n+1)-n(2n-4)+21
= 2n^2 + n - 1 - 2n^2 + 4n + 21
= 5n + 20 = 5(n + 4) chia hết cho5
A = ( n - 1 )( n + 1 ) - n2 + 3n - 5
= n2 - 1 - n2 + 3n - 5
= 3n - 6 = 3( n - 2 ) chia hết cho 3 ( đpcm )
A = ( 2n - 1 )( n + 1 ) - n( 2n - 3n ) + 21
= 2n2 + n - 1 - n( -n ) + 21
= 2n2 + n + 20 + n2
= 3n2 + n + 20 ( cái này chưa chắc được :)) )