K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2016

S=1/2+1/23+1/24+.......................+1/210

1/2S=\(\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}\)

=> 1/2S-S=\(-\frac{3}{2}S=\left(\frac{1}{2^3}+...+\frac{1}{2^{11}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)=\frac{1}{2^{11}}-\frac{1}{2^2}\)

\(\Rightarrow S=\left(\frac{1}{2^{11}}-\frac{1}{2^2}\right):-\frac{3}{2}\)

11 tháng 9 2016

Thank You Very Much

25 tháng 6 2017

\(A=\dfrac{1}{\sqrt{25}+\sqrt{24}}+\dfrac{1}{\sqrt{24}+\sqrt{23}}+....+\dfrac{1}{\sqrt{2}+1}\)

\(A=\sqrt{25}-\sqrt{24}+\sqrt{24}-\sqrt{23}+......+\sqrt{2}-1=\sqrt{25}-1=4\)

13 tháng 11 2017

làm max tắt chả hiểu gì yêu cầu làm lại đầy đủ hơn nhá

21 tháng 8 2021

chứng minh 1/21 + 1/22 + 1/23 + 1/24 +...........+ 1/80 không phải số tự nhiên giải được cho 5 sao và câu trả lời hay nhất - câu hỏi 1862868

bạn tham khảo lời giải nha

AH
Akai Haruma
Giáo viên
14 tháng 10 2023

Lời giải:
$C=1-2+2^2-2^3+2^4-....+2^{2022}$

$2C=2-2^2+2^3-2^4+2^5-...+2^{2023}$

$\Rightarrow C+2C=(1-2+2^2-2^3+2^4-....+2^{2022})+(2-2^2+2^3-2^4+2^5-...+2^{2023})$

$\Rightarrow 3C=2^{2023}-1$

$\Rightarrow C=\frac{2^{2023}-1}{3}$

24 tháng 3 2022

Số số hạng của tổng A là : \(\dfrac{30-21}{1}+1=10\left(sh\right)\)

`=>A=\underbrace{1/21+1/22+...+1/30}_{10sh}>\underbrace{1/30+1/30+1/30+...+1/30}_{10sh}`

`=>A>(1)/(30).10`

`=>A>10/30`

`=>A>1/3`

`=>đpcm`

3 tháng 5 2017

ta có :

1/2=1/40+1/40+....+1/40 (20 số hạng)

1/21+1/22+1/23....+1/40(có 20 số hạng)

vì 1/21>1/40

1/22>1/40

..........

1/39>1/40

1/40=1/40

=>A<1/2

A<1 chịu

3 tháng 5 2017

Ta có

\(\frac{1}{40}< \frac{1}{21}\\ \frac{1}{40}< \frac{1}{22}\\ ...\\ \frac{1}{40}< \frac{1}{39}\)

Mà số phần từ của A là 20

\(\Rightarrow\frac{1}{40}.20< A\Leftrightarrow\frac{1}{2}< A\)

Còn chứng minh bé hơn 1 thì tương tự bạn nhé!

29 tháng 5 2021

Đặt A = \(1+2+2^2+2^3+2^4+....+2^{100}\)

2A = \(2\left(1+2+2^2+2^3+2^4+....+2^{100}\right)\)

\(2+2^2+2^3+2^4+2^5+...+2^{101}\)

2A - A = \(\left(2+2^2+2^3+2^4+2^5+....+2^{101}\right)-\left(1+2^2+2^3+2^4+...+2^{100}\right)\)

\(2^{101}-1\)

 

29 tháng 5 2021

undefined

`#3107`

\(A=1+2^1+2^2+2^3+...+2^{2015}\)

\(2A=2+2^2+2^3+2^4+...+2^{2016}\)

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)

\(A=2+2^2+2^3+2^4+...+2^{2016}-1-2-2^2-2^3-...-2^{2015}\)

\(A=2^{2016}-1\)

Vậy, \(A=2^{2016}-1.\)

28 tháng 9 2023

\(A=2^0+2^1+2^2+...+2^{2015}\)

\(2\cdot A=2^1+2^2+2^3+...+2^{2016}\)

\(A=2A-A=2^{2016}-2^0\)

\(A=2^{2016}-1\)