So sánh hai phân số:
\(\frac{-503}{103}\)và \(\frac{-506}{105}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có phân số chung gian 123/343. mà:123/341>123/343(so sánh mẫu số khi tử bằng nhau)vaf123/343>103/343.
Qua 2 so sánh trên có thể chứng minh:123/341>103/343.
B,Ta có :1-105/107=2/107 và 1-107/109=2/109.
Mà:2/107>2/109.Vậy 105/107<107/109.(So sánh phần bù)
Ta thấy mẫu của Ava B bằng nhau vậy chỉ cần so sánh tử mà thôi
mà từ cửa AvaB cũng bằng nhau =>A=B
Tớ thấy mẫu A và B bằng nhau vậy chỉ cần so sánh tử và mẫu.
A và B cũng bằng nhau \(\Rightarrow\) A = B
Học tốt !!!
Vậy thì sửa lại đề là \(\frac{102}{103}\) và \(\frac{103}{104}\)
Bg
Ta có: \(\text{}\frac{102}{103}+\frac{1}{103}=1\)và \(\frac{103}{104}+\frac{1}{104}=1\)
Vì \(\frac{1}{103}>\frac{1}{104}\)
Nên \(\frac{102}{103}< \frac{103}{104}\)
Vậy \(\frac{102}{103}< \frac{103}{104}\)
102/103 + 1/103 = 1 => 102/103 + 2/206 = 1
103/105 +2/105 = 1
2/105 > 2/206
=> 102/103 < 103/105
\(A=\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)
\(A< \frac{1}{100\cdot101}+\frac{1}{101\cdot102}+\frac{1}{102\cdot103}+\frac{1}{103\cdot104}+\frac{1}{104\cdot105}\)
\(=\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)
\(=\frac{1}{100}-\frac{1}{105}=\frac{1}{2100}=\frac{1}{2^2\cdot3\cdot5^2\cdot7}=B\)
Vậy \(A< B\)
\(\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)
\(< \frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+\frac{1}{103.104}+\frac{1}{104.105}\)
\(< \frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)
\(< \frac{1}{100}-\frac{1}{105}=\frac{1}{2100}\)
\(< \frac{1}{2^2.3.5^2.7}\)
A = \(\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)< \(\frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+\frac{1}{103.104}+\frac{1}{104.105}\) =\(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)
= \(\frac{1}{100}-\frac{1}{105}=\frac{1}{2100}\)= \(\frac{1}{2^2.3.5^2.7}\)= B
Vậy A < B
\(A<\frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+\frac{1}{103.104}+\frac{1}{104.105}=\frac{1}{100}-\frac{1}{105}=\frac{1}{2100}\)
B = 1/2100
=> A< B
\(\frac{-503}{103}< \frac{-506}{105}\)
-503/103<-506/105